Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1333-1342    DOI: 10.11720/wtyht.2025.0101
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
雄安新区浅地表地质—地球物理三维可视化建模
朱帅鹏1(), 邱勇1, 徐志萍1, 刘巧霞1, 林吉焱1, 段永红1, 李菊红2
1.中国地震局 地球物理勘探中心, 河南 郑州 450002
2.帕拉代姆技术(北京)有限公司, 北京 100081
3D visualization modeling of shallow-surface geological and geophysical data in Xiong'an New Area
ZHU Shuai-Peng1(), QIU Yong1, XU Zhi-Ping1, LIU Qiao-Xia1, LIN Ji-Yan1, DUAN Yong-Hong1, LI Ju-Hong2
1. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China
2. Paradigm Technology(Beijing) Co. Ltd., Beijing 100081, China
全文: PDF(5671 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

构建重点城市区三维可视化模型是实现多学科资料交叉融合、直观展示地层空间展布特征的重要手段。本文综合运用地球物理数据开展三维可视化模型构建,解决已有三维模型在地质—地球物理综合解释和成果具象展示等方面存在的不足。通过构建雄安核心区5 km以浅的三维构造模型和三维速度模型,揭示了三维S波速度分布特征对地层空间形态的响应,验证了雄安核心区凸起和凹陷相间发育的构造格局。0~1 km深度范围内,S波速度的横向均匀性反映了第四系和新近系地层的稳定沉积特征;1~2.2 km内,速度分带效应不明显,主要由于蓟县系热储层裂隙发育导致S波速度降低;2.2 km以深,徐水凹陷与容城凸起构造单元间显著的速度对比主要源于岩性差异及地层的不整合接触。通过构建三维速度模型,有助于突破有限地质资料的局限,从物理属性角度揭示雄安核心区地下三维结构的特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱帅鹏
邱勇
徐志萍
刘巧霞
林吉焱
段永红
李菊红
关键词 三维建模三维S波速度模型雄安新区地球物理数据SKUA-GOCAD    
Abstract

The construction of three-dimensional visualization models in key urban areas is important for multidisciplinary data integration and intuitive presentation of spatial stratigraphic distribution.However,existing models face limitations in integrated geological-geophysical interpretation and concrete visualization of results.In response to this,this study established a 3D visualization model based on comprehensive geophysical data,specifically including a 3D structural model and a 3D velocity model for the Xiong'an core area down to 5 km depth.It revealed the correspondence between the 3D S-wave velocity distribution and the spatial morphology of strata,and validated the structural framework of alternating uplifts and depressions.To be specific,within the depth range of 0~1 km,the lateral homogeneity of S-wave velocity reflects the stable sedimentary characteristics of Quaternary and Neogene strata.Between 1 km and 2.2 km,the velocity zoning is unclear,primarily due to fracture development in the Jixianian geothermal reservoir,which leads to a reduction in S-wave velocity.Below 2.2 km,the significant velocity contrast between the Xushui Depression and the Rongcheng Uplift is mainly attributed to lithological differences and unconformable contacts.The construction of the 3D velocity model helps overcome the limitations of sparse geological data and reveals the subsurface 3D structures in the Xiong'an core area from a physical property perspective.

Key words3D modeling    3D S-wave velocity model    Xiong'an New Area    geophysical data    SKUA-GOCAD
收稿日期: 2025-04-14      修回日期: 2025-09-22      出版日期: 2025-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金(42374073);河南省自然科学基金面上项目(242300421374);中国地震局地球物理勘探中心青年基金项目(YFGEC2023011)
引用本文:   
朱帅鹏, 邱勇, 徐志萍, 刘巧霞, 林吉焱, 段永红, 李菊红. 雄安新区浅地表地质—地球物理三维可视化建模[J]. 物探与化探, 2025, 49(6): 1333-1342.
ZHU Shuai-Peng, QIU Yong, XU Zhi-Ping, LIU Qiao-Xia, LIN Ji-Yan, DUAN Yong-Hong, LI Ju-Hong. 3D visualization modeling of shallow-surface geological and geophysical data in Xiong'an New Area. Geophysical and Geochemical Exploration, 2025, 49(6): 1333-1342.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0101      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1333
Fig.1  雄安新区大地构造
图中构造单元划分据何登发等[18]修改,断层展布据商世杰等[20]修改,黑色矩形为雄安核心区域,浅蓝色线条为河流迹线
数据类型 数据来源 数据量 数据概况
地形图 Global Mapper
资源库
1幅 研究区DEM数据,分辨率30 m
基础地质图 中国地质调查局
发展研究中心
1幅 保定幅1∶20万区域地质图,包含研究区的地质要素、地理要素等信息
地质剖面图 汪新伟等[34]
戴明刚等[19]
9幅 收集前人绘制的地质剖面图
地震剖面图 中国地震局
地球物理勘探中心
20幅 其中6幅为地震反射剖面构造解译图
钻孔 自然资源
实物地质资料中心
49个 钻孔数据由钻孔柱状图整理所得
地壳速度
结构
中国地震局
地球物理勘探中心
1份 雄安新区地壳三维S波速度结构数据
Table 1  建模数据来源
Fig.2  研究区数据资料分布
黑色矩形为雄安核心区域,AB红色线段为图切剖面位置
Fig.3  雄安核心区三维地质体模型
Fig.4  雄安核心区三维地质底界面模型
Fig.5  雄安核心区地质底界面与断层面三维展布
Fig.6  雄安核心区三维速度结构模型纵向切片
Fig.7  三维S波速度提取(2.5 km/s≤vs≤2.6 km/s)
Fig.8  三维S波速度提取(2.7 km/s≤vs≤3.3 km/s)
Fig.9  雄安核心区三维速度结构模型东西向垂直切片
图中黑色实线为剖面所过钻井,黑色波浪线为不整合界面
Fig.10  雄安核心区三维地质体模型东西向垂直切片
[1] Houlding S W. 3D geoscience modeling[M]. Springer Berlin Heidelberg, 1994.
[2] Breunig M. An approach to the integration of spatial data and systems for a 3D geo-information system[J]. Computers & Geosciences, 1999, 25(1):39-48.
[3] Jessell M. Three-dimensional geological modelling of potential-field data[J]. Computers & Geosciences, 2001, 27(4):455-465.
[4] 潘懋, 方裕, 屈红刚. 三维地质建模若干基本问题探讨[J]. 地理与地理信息科学, 2007, 23(3):1-5.
[4] Pan M, Fang Y, Qu H G. Discussion on several foundational issues in three-dimensional geological modeling[J]. Geography and Geo-Information Science, 2007, 23(3):1-5.
[5] 杨东来, 张永波, 王新春, 等. 地质体三维建模方法与技术指南[M]. 北京: 地质出版社, 2007.
[5] Yang D L, Zhang Y B, Wang X C, et al. Guidelines for 3D modeling methods and techniques for geological bodies[M]. Beijing: Geological Publishing House, 2007.
[6] 范文遥, 曹梦雪, 路来君. 基于GOCAD软件的三维地质建模可视化过程[J]. 科学技术与工程, 2020, 20(24):9771-9778.
[6] Fan W Y, Cao M X, Lu L J. Visualization process of 3D geological modeling based on GOCAD software[J]. Science Technology and Engineering, 2020, 20(24):9771-9778.
[7] Pan Z G, Ding H, Wan J. Virtual reality and its application in industry[J]. Journal of Hangzhou Institute of Electronic Engineering, 2002.
[8] 姜弢, 陈振振, 徐学纯. 基于VTK和QT的层状地质体三维建模及可视化研究[J]. 科学技术与工程, 2015, 15(25):169-174.
[8] Jiang T, Chen Z Z, Xu X C. Study on 3D visualization of stratified geological objects based on VTK and QT[J]. Science Technology and Engineering, 2015, 15(25):169-174.
[9] 李青元, 张洛宜, 曹代勇, 等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探, 2016, 52(4):759-767.
[9] Li Q Y, Zhang L Y, Cao D Y, et al. Usage,status,problems,trends and suggestions of 3D geological modeling[J]. Geology and Exploration. 2016, 52(4):759-767.
[10] 冉祥金. 区域三维地质建模方法与建模系统研究[D]. 长春: 吉林大学, 2020.
[10] Ran X J. The research of method and system of regional three-dimensional geological modeling[D]. Changchun: Jilin University, 2020.
[11] 董梅, 慎乃齐, 胡辉, 等. 基于GOCAD的三维地质模型构建方法[J]. 桂林工学院学报, 2008, 28(2):188-192.
[11] Dong M, Shen N Q, Hu H, et al. 3D geological modeling method based on GOCAD[J]. Journal of Guilin University of Technology, 2008, 28(2):188-192.
[12] 张杰, 杨毅, 王凯, 等. 综合地球物理在雄安新区三维地质结构探测中的应用与成果[J]. 物探化探计算技术, 2022, 44(6):742-750.
[12] Zhang J, Yang Y, Wang K, et al. Application and achievements of comprehensive geophysics prospecting in three-dimensional geological structure exploration in Xiong'an new area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6):742-750.
[13] 欧洋, 张杰, 冯杰, 等. 地质—地球物理三维可视化建模及其应用——以雄安新区为例[J]. 华东地质, 2022, 43(3):286-296.
[13] Ou Y, Zhang J, Feng J, et al. 3D visualization modeling of geological and geophysical data and its application:A case study of Xiong'an New Area[J]. East China Geology, 2022, 43(3):286-296.
[14] 龙慧, 谢兴隆, 李凤哲, 等. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4):808-815.
[14] Long H, Xie X L, Li F Z, et al. 2D seismic and high-density resistivity sounding reveal the shallow three-dimensional geological structure characteristics of Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2022, 46(4):808-815.
[15] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3):385-391.
[15] Yu C C, Qiao R X, Zhang D S. The basement tectonic characteristics from interpretation of aeromagnetic data in Xiong'an region[J]. Geophysical and Geochemical Exploration, 2017, 41(3):385-391.
[16] 杨明慧, 刘池阳, 杨斌谊, 等. 冀中坳陷古近纪的伸展构造[J]. 地质论评, 2002, 48(1):58-67.
[16] Yang M H, Liu C Y, Yang B Y, et al. Extensional structures of the paleogene in the Central Hebei Basin,China[J]. Geological Review, 2002, 48(1):58-67.
[17] 张文朝, 杨德相, 陈彦均, 等. 冀中坳陷古近系沉积构造特征与油气分布规律[J]. 地质学报, 2008, 82(8):1103-1112.
[17] Zhang W C, Yang D X, Chen Y J, et al. Sedimentary structural characteristics and oil and gas distribution patterns of the Paleogene in the Jizhong Depression[J]. Acta Geologica Sinica, 2008, 82(8):1103-1112.
[18] 何登发, 单帅强, 张煜颖, 等. 雄安新区的三维地质结构:来自反射地震资料的约束[J]. 中国科学:地球科学, 2018, 48(9):1207-1222.
[18] He D F, Shan S Q, Zhang Y Y, et al. Three-dimensional geological structure of Xiong'an New Area:Constraints from reflected seismic data[J]. Chinese Science:Earth Science, 2018, 48(9):1207-1222.
[19] 戴明刚, 孙彭光, 雷海飞, 等. 雄安新区地层及主要热储空间结构特征与地热水资源潜力[J]. 地质科学, 2023, 58(2):412-437.
[19] Dai M G, Sun P G, Lei H F, et al. Spatial distribution characteristics of strata and main thermal reservoirs and geothermal water resource potential in Xiong'an New Area[J]. Chinese Journal of Geology, 2023, 58(2):412-437.
[20] 商世杰, 丰成君, 谭成轩, 等. 雄安新区附近主要隐伏断层第四纪活动性研究[J]. 地球学报, 2019, 40(6):836-846.
[20] Shang S J, Feng C J, Tan C X, et al. Quaternary activity study of major buried faults near Xiong’an New Area[J]. Acta Geoscientica Sinica, 2019, 40(6):836-846.
[21] 鲁锴, 刘玲, 鲍志东, 等. 基于可钻性分析及三维地质建模的钻探有利区优选:以雄安新区雾迷山组为例[J]. 现代地质, 2023, 37(5):1398-1410.
[21] Lu K, Liu L, Bao Z D, et al. Favorable drilling target selection based on drillability analysis and 3D Geological Modeling:A case study in the Wumishan Formation,Xiong'an New Area[J]. Geoscience, 2023, 37(5):1398-1410.
[22] 单帅强, 张煜颖, 张锐锋. 渤海湾盆地徐水凹陷地质结构与构造演化[J]. 石油与天然气地质, 2018, 39(5):1037-1047.
[22] Shan S Q, Zhang Y Y, Zhang R F. Geologic architecture and tectonic evolution of Xushui Sag,Bohai Bay Basin[J]. Oil & Gas Geology, 2018, 39(5):1037-1047.
[23] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质, 2021, 48(5):1453-1468.
[23] Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiong'an New Area:Evidence from geophysics[J]. Geology in China, 2021, 48(5):1453-1468.
[24] 吴志春, 郭福生, 张万良, 等. 江西乐安相山火山盆地多源数据融合三维地质建模[J]. 桂林理工大学学报, 2020, 40(2):310-322.
[24] Wu Z C, Guo F S, Zhang W L, et al. 3D geological modeling based on multi-source data merging of Xiangshan volcanic basin in Le'an of Jiangxi[J]. Journal of Guilin University of Technology, 2020, 40(2):310-322.
[25] 王金艳, 鲁人齐, 张浩, 等. 郯庐断裂带江苏段新生界三维地质构造建模[J]. 地震学报, 2020, 42(2):216-230.
[25] Wang J Y, Lu R Q, Zhang H, et al. Three-dimensional geological modeling of Cenozoic erathem in Jiangsu segment of the Tanlu fault zone[J]. Acta Seismologica Sinica, 2020, 42(2):216-230.
[26] Wu Q, Xu H, Zou X. An effective method for 3D geological modeling with multi-source data integration[J]. Computers & Geosciences, 2005, 31(1):35-43.
[27] 李青元, 张丽云, 魏占营, 等. 三维地质建模软件发展现状及问题探讨[J]. 地质学刊, 2013, 37(4):554-561.
[27] Li Q Y, Zhang L Y, Wei Z Y, et al. On 3D geological modeling software development and discussions on several issues[J]. Journal of Geology, 2013, 37(4):554-561.
[28] 张毫生. 川南长宁地区地质三维建模与地震构造环境分析[D]. 成都: 成都理工大学, 2020.
[28] Zhang H S. Three dimensional geological modeling and analysis of seismotectonic environment in Changning area,South Sichuan[D]. Chengdu: Chengdu University of Technology, 2020.
[29] Mallet J L. Discrete modeling for natural objects[J]. Mathematical Geology, 1997, 29(2):199-219.
[30] 侯曼青, 吴志春, 郭福生, 等. 江西乐安邹家山—居隆庵地区三维地质模型的构建[J]. 地质学刊, 2016, 40(1):118-124.
[30] Hou M Q, Wu Z C, Guo F S, et al. Establishment of a three-dimensional geological model of the Zoujiashan-Julong'an area in Le'an of Jiangxi Province[J]. Journal of Geology, 2016, 40(1):118-124.
[31] 肖艳云, 刘敬, 李文敬, 等. 基于多源数据的三维地质建模——以东莞市滨海湾新区为例[J]. 华南地质, 2023, 39(3):548-557.
[31] Xiao Y Y, Liu J, Li W J, et al. 3D geological modeling based on multi-source data:Taking Binhai Bay New Area of Dongguan city as an example[J]. South China Geology, 2023, 39(3):548-557.
[32] 许加田, 薛东剑, 李阳. 综合多源数据的矿床三维地质建模——以四川某铅锌矿为例[J]. 地质通报, 2023, 42(7):1203-1210.
[32] Xu J T, Xue D J, Li Y. Three-dimensional geological model of deposits with the integration of data of multi-sources:A case study of lead-zinc deposit,Sichuan Province[J]. Geological Bulletin of China, 2023, 42(7):1203-1210.
[33] 刘华姣. 川南长宁地区地震构造特征研究[D]. 成都: 成都理工大学, 2021.
[33] Liu H J. Study on seismotectonic characteristics in Changning area of Southern Sichuan[D]. Chengdu: Chengdu University of Technology, 2021.
[34] 汪新伟, 郭世炎, 高楠安, 等. 雄安新区牛东断裂带碳酸盐岩热储探测及其对地热勘探的启示[J]. 地质通报, 2023, 42(1):14-26.
[34] Wang X W, Guo S Y, Gao N A, et al. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance[J]. Geological Bulletin of China, 2023, 42(1):14-26.
[35] 李兆亮, 潘懋, 韩大匡, 等. 三维构造建模技术[J]. 地球科学, 2016, 41(12):2136-2146.
[35] Li Z L, Pan M, Han D K, et al. Three-dimensional structural modeling technique[J]. Earth Science, 2016, 41(12):2136-2146.
[36] 李兆亮, 潘懋, 韩大匡, 等. 储层精细构造模型三维网格化技术[J]. 科学技术与工程, 2017, 17(26):36-42.
[36] Li Z L, Pan M, Han D K, et al. 3D gridding technology of reservoir fine structure model[J]. Science Technology and Engineering, 2017, 17(26):36-42.
[37] 郭飒飒, 朱传庆, 邱楠生, 等. 雄安新区深部地热资源形成条件与有利区预测[J]. 地质学报, 2020, 94(7):2026-2035.
[37] Guo S S, Zhu C Q, Qiu N S, et al. Formation conditions and favorable areas for the deep geothermal resources in Xiong'an New Area[J]. Acta Geological Sinica, 2020, 94(7):2026-2035.
[38] 李红岩, 高小荣, 任小庆, 等. 雄安新区三维地热地质模型方法研究[J]. 地质与资源, 2024, 33(2):222-229,236.
[38] Li H Y, Gao X R, Ren X Q, et al. 3D geothermal geological modeling method of Xiong'an New Area[J]. Geology and Resources, 2024, 33(2):222-229,236.
[39] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.
[39] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1981-1990.
[1] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
[2] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
[3] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[4] 单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
[5] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[6] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[7] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[8] 周月, 官大维, 延海涛, 张小龙. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2): 308-315.
[9] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[10] 何畏, 吴文鹂, 李建华, 林品荣, 梁萌, 顾观文, 冯斌. 一种电磁法三维数值模拟的建模与网格剖分方法[J]. 物探与化探, 2018, 42(6): 1272-1279.
[11] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3): 385-391.
[12] 刘兆平, 杨进, 武炜. 地球物理数据网格化方法的选取[J]. 物探与化探, 2010, 34(1): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com