Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet
GONG Jian-Sheng1(), LANG Xing-Hai2(), WANG Zhao-Shuai3, DENG Yu-Lin4, WU Chang-Yi2, HE Qing2, LI Zhi-Jun2, DING Feng2, ZHAN Hong-Yu2, LOU Yu-Ming1
1. Zijin Mining Group Southwest Geological Exploration Co., Ltd., Chengdu 610059, China 2. College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China 3. Shandong Geology and Mineral Resources Engineering Group Co., Ltd., Jinan 250013, China 4. College of Energy, Chengdu University of Technology, Chengdu 610059, China
The Xiongcun ore concentration area in Xietongmen County, Tibet, is situated in the central segment of the Gangdise metallogenic belt. This study aims to investigate the distribution characteristics and geochemical anomalies of ore-forming elements in the study area and its periphery. This will guide the deployment of mineral exploration work in the study area and its periphery and promote the construction of the Xiongcun large-scale copper-gold resource base. Through the assessment of 1∶50000 stream-sediment geochemical anomalies in the study area and its periphery, this study determined the geochemical anomaly distributions and enrichment patterns of five elements (i.e., Cu, Au, Pb, Zn, and Ag) in the study area. Based on the analytical results of element anomalies and the geological characteristics of the study area, this study delineated the composite anomaly zones in the study area. Furthermore, this study assessed the prospecting potential of the study area through follow-up geochemical surveys. The results indicate that Cu and Au serve as the principal ore-forming elements in the study area. Both elements are characterized by strong enrichment and strong variability, showing high mineralization and prospecting potential. Four composite geochemical anomaly zones of stream sediments were identified. Among them, zones HS-1 and HS-2 exhibit highly consistent composite anomalies. Both zones show the distribution of known ore deposits (occurrences) or significant mineralization shows, suggesting considerable potential for ore prospecting. Overall, this study provides geochemical evidence for geological prospecting in the Xiongcun ore concentration area and its periphery while also offering ideas and a reference for subsequent mineral exploration targets in the study area.
龚建生, 郎兴海, 王兆帅, 邓煜霖, 吴昌益, 何青, 李志军, 丁枫, 詹宏宇, 娄渝明. 西藏谢通门县雄村矿集区及其外围水系沉积物地球化学特征及异常评价[J]. 物探与化探, 2025, 49(6): 1291-1302.
GONG Jian-Sheng, LANG Xing-Hai, WANG Zhao-Shuai, DENG Yu-Lin, WU Chang-Yi, HE Qing, LI Zhi-Jun, DING Feng, ZHAN Hong-Yu, LOU Yu-Ming. Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet. Geophysical and Geochemical Exploration, 2025, 49(6): 1291-1302.
Hou Z Q, Yang Z M, Qu X M, et al. The miocene gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/3):25-51.
Tang J X, Wang Q, Yang H H, et al. Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet[J]. Acta Geoscientica Sinica, 2017, 38(5):571-613.
Li G M, Zhang L K, Jiao Y J, et al. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt,southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008.
[4]
Hou Z Q, Duan L F, Lu Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. 2015, 110(6):1541-1575.
Lang X H, Chen M C, Tang J X, et al. A discussion on genesis of Xiongcun porphyry copper-gold deposit,Xietongmen,Xizang(Tibet):Evidence from elements spatial distribution characteristics[J]. Geological Review, 2010a, 56(3):384-402.
Lang X H, Guo W B, Wang X H, et al. Petrogenesis and tectonic implications of the ore-bearing porphyries in the Xiongcun district:Constraints from the geochronology and geochemistry[J]. Acta Petrologica Sinica, 2019, 35(7):2105-2123.
Tang J X, Huang Y, Li Z J, et al. Element geochemical characteristics of Xiongcun Cu-Au deposit in Xaitongmen County,Tibet[J]. Mineral Deposits, 2009, 28(1):15-28.
Lang X H, Tang J X, Chen M C, et al., 2010b.Re-Os dating of molybdenite from orebody no.Ⅱ of the Xiongcun porphyry copper-gold metallogenic district,Xietongmen,Tibet and its geological significance[J]. Mineralogy and Petrology,2010, 30(4):55-61.
Lang X H, Tang J X, Li Z J, et al. Geochemical evaluation of exploration prospect in the Xiongcun copper-gold district and peripheral areas,Xietongmen County,Tibet[J]. Geology and Exploration, 2012, 48(1):12-23.
Lang X H, Cui Z W, Wang X H, et al. Comprehensive information prospecting model and target prediction for the Xiongcun Area,Xietongmen County,Tibet[J]. Acta Geoscientica Sinica, 2017, 38(5):790-802.
Han P, Lang X H, Deng Y L, et al. Soil geochemical characteristics and abnormal evaluation of Xiongxcun district peripheral areas,Xietongmen county,Tibet[J]. Computing Techniques For Geophysical and Geochemical Exploration, 2018, 40(6):812-819.
[12]
Lang X H, Liu D, Deng Y L, et al. Detrital zircon geochronology and geochemistry of Jurassic sandstones in the Xiongcun district,southern Lhasa subterrane,Tibet,China:Implications for provenance and tectonic setting[J]. Geological Magazine, 2019, 156(4):683-701.
[13]
Lang X H, Wang X H, Deng Y L, et al. Hydrothermal evolution and ore precipitation of the No.2 porphyry Cu-Au deposit in the Xiongcun district,Tibet:Evidence from cathodoluminescence,fluid inclusions,and isotopes[J]. Ore Geology Reviews, 2019, 114:103141.
Pan G T, Mo X X, Hou Z Q, et al. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.
[15]
Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2):241-255.
[16]
Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454.
Deng J, Yang L Q, Wang C M, et al. Superimposed orogenesis and metallogenesis in Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9):2501-2509.
[18]
Zheng Y C, Fu Q, Hou Z Q, et al. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane,southern Tibet[J]. Ore Geology Reviews, 2015, 70:510-532.
[19]
Lin B, Tang J X, Tang P, et al. Multipulsed magmatism and duration of the hydrothermal system of the giant Jiama porphyry Cu system,Tibet,China[J]. Economic Geology, 2024, 119(1):201-217.
[20]
Sun X, Li R Y, Si X B, et al. Timing and mechanism of ore precipitation in porphyry Cu systems:Insight from LA-ICP-MS analysis of fluid inclusions and in situ oxygen isotope analysis of hydrothermal quartz at Zhunuo porphyry Cu deposit,China[J]. Economic Geology, 2024, 119(3):593-616.
[21]
Xue Q Q, Zhang L P, Chen S, et al. The source and ore-forming processes of post-collisional Qulong porphyry Cu-Mo deposit in Tibet constrained by Mo isotopes[J]. Chemical Geology, 2024, 652:122025.
[22]
Wang X H, Lang X H, Turlin F, et al. Copper behavior in arc-back-arc systems:Insights into the porphyry Cu metallogeny of the gangdese belt,southern Tibet[J]. Mineralium Deposita, 2024, 59(1):133-154.
[23]
Zhang P, Li Z, Zhao F, et al. Petrogenesis and tectonic implications of the granite porphyry in the sinongduo Ag-Pb-Zn deposit,central Tibet:Constraints from geochronology,geochemistry,and Sr-Nd isotopes[J]. Minerals, 2024, 14(7):710.
[24]
Lang X H, Deng Y L, Wang X H, et al. Geochronology and geochemistry of volcanic rocks of the Bima Formation,southern Lhasa subterrane,Tibet:Implications for early Neo-Tethyan subduction[J]. Gondwana Research, 2020, 80:335-349.
[25]
Deng Y L, Lang X H, Wang X H, et al. Early Mesozoic arc-back-arc system in the leading edge of the Tibetan Plateau[J]. Lithos, 2021, 406:106530.
Qu X M, Hou Z Q, Li Y G. Indications of S and Pb isotopes of the Gangdese Porphyry Copper Belt for the ore-forming source of material source and material recycling within the orogenic belt[J]. Geological Bulletin, 2002, 21(11):768-776.
Tang J X, Li F J, Li Z J, et al. Time limit for formation of main geological bodies in Xiongcun copper-gold deposit,Xietongmen County,Tibet:Evidence from zircon U-Pb ages and Re-Os age of molybdenite[J]. Mineral Deposits, 2010, 29(3):461-475.
He Q, Xie H R, Lang X H, et al. Geochronological and geochemical characteristics of the ore-bearing tuff of Dongga gold deposit in the Xiongcun area,Xizang (Tibet)[J]. Geological Review, 2023, 69(5):1694-1718.
Hu J X, Yao S, Wang B, et al. 1∶50 000 regional geological survey report of the Xietongmen County sheet (H45E016018),Rinqênzê sheet (H45E016019),Donggar sheet (H45E016020) and Ngamring sheet (H45E016021) [R]. Xi'an:Institute of Regional Geology and Mineral Resources,Shaanxi Bureau of Geology and Mineral Resources, 2014.
[30]
Lang X H, Tang J X, Li Z J, et al. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt,southern Tibet,PRC[J]. Journal of Asian Earth Sciences, 2014, 79:608-622.
Lang X H, Deng Y L, Wang X H, et al. Geochemical characteristics of sulfur and lead isotope compositions and implications for the sourced of metals from No.Ⅲ ore body in Xiongcun Mining Area,Tibet[J]. Geological Science and Technology Information, 2018, 37(4):1-9.
Wang X H, Lang X H, Deng Y L, et al. Eocene diabase dikes in the Tangbai area,southern margin of Lhasa terrane,Tibet:Evidence for the slab break-off of the Neo-Tethys Ocean[J]. Geology in China, 2019, 46(6):1336-1355.
[33]
Wang X H, Lang X H, Tang J X, et al. Early-Middle Jurassic (182-170 Ma) Ruocuo adakitic porphyries,southern margin of the Lhasa terrane,Tibet:Implications for geodynamic setting and porphyry Cu-Au mineralization[J]. Journal of Asian Earth Sciences, 2019, 173:336-351.
[34]
Wang X H, Lang X H, Tang J X, et al. Early Carboniferous back-arc rifting-related magmatism in southern Tibet:Implications for the history of the Lhasa terrane separation from Gondwana[J]. Tectonics, 2020, 39(10):e2020TC006237.
[35]
Deng Y L, Lang X H, Klemd R, et al. Origin of Early Eocene diabase dikes in the southern Lhasa terrane:Implications for the Neo-Tethyan slab breakoff[J]. Lithos, 2024, 466:107481.
Tang J X, Li Z J, Lang X H, et al. Exploration report of the copper deposit in the Xiongcun Mining Area,Xietongmen County,Tibet Autonomous Region[R]. Beijing: Institute of Mineral Resources,Chinese Academy of Geological Sciences, 2012.
[37]
Lang X H, Deng Y L, He Q, et al. Origin of the Dongga Au deposit in the giant Xiongcun porphyry Cu-Au district,Tibet,China:Constraints from multiple isotopes (Re,Os,He,Ar,H,O,S,Pb) and fluid inclusions[J]. Ore Geology Reviews, 2024, 171:106173.
Tang J X, Li Z J, Ding F, et al. Geological preliminary survey report of the Tanghe polymetallic deposit,Xietongmen County,Shigatse,Tibet[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.
Tang J X, Li Z J, Ding F, et al. Geological preliminary survey report of the Jila polymetallic deposit,Xietongmen County,Shigatse,Tibet[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.
Tang J X, Li Z J, Ding F, et al. Geological preliminary survey report of the Lielang polymetallic deposit,Xietongmen County,Shigatse,Tibet[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.
Tang J X, Li Z J, Lang X H, et al. Geological exploration report of the Tangbai copper deposit,Shigatse,Tibet[R]. Chengdu: Chengdu University of Technology, 2005.
Tang J X, Li Z J, Lang X H, et al. Geological preliminary survey report of the Rire copper deposit,Xietongmen County,Shigatse,Tibet[R]. Chengdu: Chengdu University of Technology, 2005.
Tang J X, Li Z J, Lang X H, et al. Geological exploration report of the Zemoduola copper deposit,Xietongmen County,Shigatse,Tibet[R]. Chengdu: Chengdu University of Technology, 2005.
Tang J X, Li Z J, Lang X H, et al. Geological exploration report of the Donggapu copper deposit,Xietongmen County,Shigatse,Tibet[R]. Chengdu: Chengdu University of Technology, 2005.
Li G M. Metallogenic regularity and prognosis of copper-iron polymetallic deposits in Gangdise metallogenic belt and its adjacent areas in Xizang[M]. Beijing: Geological Publishing House, 2011.
Lou Y M. Study on surface and deep metallogenic prediction based on geological-geochemical information in Xiongcun District,Tibet[D]. Chengdu: Chengdu University of Technology, 2024.
[47]
胡以铿. 地球化学中的多元分析[M]. 武汉: 中国地质大学出版社, 1991.
[47]
Hu Y K. Multivariate analysis in geochemistry[M]. Wuhan: China University of Geosciences Press, 1991.
Wen H C, Yang L H, Liu H J, et al. Soil geochemical characteristics and prospecting prediction in Alagewula Area,Inner Mongolia[J]. China Mining Magazine, 2024, 33(S1):532-537.
Yue G L, Gui X X, Song L Q, et al. Soil geochemical characteristics and prospecting potential of the Daweng gold mine in eastern Xizang[J]. Geology and Exploration, 2023, 59(6):1204-1216.
[50]
Tukey J W. Exploratory Data Analysis[M]. London: Addison-Wesley, 1977.
[51]
史长义. 勘查数据分析(EDA)技术的应用[J]. 地质与勘探, 1993(11):52-58.
[51]
Shi C Y. Application of the exploratory data analysis technique[J]. Geology and Exploration, 1993(11):52-58.
[52]
Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in gis[J]. Handbook of Exploration & Environmental Geochemistry, 2009, 104:887-892.
[53]
Reimann C, Filzmoser P, Garrett R G. Background and threshold:Critical comparison of methods of determination[J]. Science of the Total Environment, 2005, 346(1/3):1-16.
Li Y G. Screening of prospecting targets for copper-nickel-platinum group element deposits in Panxi area based on“3S” technology[D]. Chengdu: Chengdu University of Technology, 2007.
Li Q Z, Jun Z, Lei L, et al. Comparison of low limit determination methods of petro-geochemical anomly:Taking Sigu area of Yunnan sa an example[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(3):429-434.