E-mail Alert Rss
 

物探与化探, 2025, 49(6): 1291-1302 doi: 10.11720/wtyht.2025.0059

地质调查资源勘查

西藏谢通门县雄村矿集区及其外围水系沉积物地球化学特征及异常评价

龚建生,1, 郎兴海,2, 王兆帅3, 邓煜霖4, 吴昌益2, 何青2, 李志军2, 丁枫2, 詹宏宇2, 娄渝明1

1.紫金矿业集团西南地质勘查有限公司, 四川 成都 610059

2.成都理工大学 地球与行星科学学院, 四川 成都 610059

3.山东省地矿工程集团有限公司, 山东 济南 250013

4.成都理工大学 能源学院, 四川 成都 610059

Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet

GONG Jian-Sheng,1, LANG Xing-Hai,2, WANG Zhao-Shuai3, DENG Yu-Lin4, WU Chang-Yi2, HE Qing2, LI Zhi-Jun2, DING Feng2, ZHAN Hong-Yu2, LOU Yu-Ming1

1. Zijin Mining Group Southwest Geological Exploration Co., Ltd., Chengdu 610059, China

2. College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China

3. Shandong Geology and Mineral Resources Engineering Group Co., Ltd., Jinan 250013, China

4. College of Energy, Chengdu University of Technology, Chengdu 610059, China

通讯作者: 郎兴海(1982-),男,教授,博士,从事矿床学、矿产普查与勘探的教学和研究工作。Email:langxinghai@126.com

第一作者: 龚建生(1981-),男,硕士,主要从事固体矿产勘查评价工作。Email:412627871@qq.com

收稿日期: 2025-02-27   修回日期: 2025-08-19  

基金资助: 深地国家科技重大专项(2024ZD1003200)
国家重点研发计划项目(2022YFC2905000)
成都理工大学珠峰科学研究计划项目(2020ZF11407)
中国地质调查局项目(DD20240069-05)

Received: 2025-02-27   Revised: 2025-08-19  

摘要

为研究位于冈底斯成矿带中段的雄村矿集区及其外围的成矿元素分布特征及地球化学异常,指导雄村矿集区及外围的找矿勘查工作部署,推动雄村大型铜金资源基地建设,开展了雄村矿集区及外围的1∶50 000水系沉积物地球化学异常评价工作,查明了该区Cu、Au、Pb、Zn、Ag共5种元素的地球化学异常分布特征及富集规律。根据元素异常分析结果,结合研究区地质特征,圈定综合异常区,开展了异常区查证工作,对研究区找矿潜力进行评价。研究结果表明,Cu、Au是研究区的主要成矿元素,呈现强富集、强变异特征,具有较大的成矿潜力和找矿前景;共圈定水系沉积物地球化学综合异常区4个,其中HS-1和HS-2综合异常套合好,有已知矿床(点)分布或矿化显示较好,具有较大的找矿潜力。本次研究为雄村矿集区及其外围的地质找矿提供了地球化学依据,为研究区下一步的矿产勘查方向提供了思路与参考。

关键词: 水系沉积物; 地球化学特征; 雄村矿集区; 铜金矿

Abstract

The Xiongcun ore concentration area in Xietongmen County, Tibet, is situated in the central segment of the Gangdise metallogenic belt. This study aims to investigate the distribution characteristics and geochemical anomalies of ore-forming elements in the study area and its periphery. This will guide the deployment of mineral exploration work in the study area and its periphery and promote the construction of the Xiongcun large-scale copper-gold resource base. Through the assessment of 1∶50000 stream-sediment geochemical anomalies in the study area and its periphery, this study determined the geochemical anomaly distributions and enrichment patterns of five elements (i.e., Cu, Au, Pb, Zn, and Ag) in the study area. Based on the analytical results of element anomalies and the geological characteristics of the study area, this study delineated the composite anomaly zones in the study area. Furthermore, this study assessed the prospecting potential of the study area through follow-up geochemical surveys. The results indicate that Cu and Au serve as the principal ore-forming elements in the study area. Both elements are characterized by strong enrichment and strong variability, showing high mineralization and prospecting potential. Four composite geochemical anomaly zones of stream sediments were identified. Among them, zones HS-1 and HS-2 exhibit highly consistent composite anomalies. Both zones show the distribution of known ore deposits (occurrences) or significant mineralization shows, suggesting considerable potential for ore prospecting. Overall, this study provides geochemical evidence for geological prospecting in the Xiongcun ore concentration area and its periphery while also offering ideas and a reference for subsequent mineral exploration targets in the study area.

Keywords: stream sediments; geochemical characteristics; Xiongcun ore concentration area; copper-gold mine

PDF (14007KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

龚建生, 郎兴海, 王兆帅, 邓煜霖, 吴昌益, 何青, 李志军, 丁枫, 詹宏宇, 娄渝明. 西藏谢通门县雄村矿集区及其外围水系沉积物地球化学特征及异常评价[J]. 物探与化探, 2025, 49(6): 1291-1302 doi:10.11720/wtyht.2025.0059

GONG Jian-Sheng, LANG Xing-Hai, WANG Zhao-Shuai, DENG Yu-Lin, WU Chang-Yi, HE Qing, LI Zhi-Jun, DING Feng, ZHAN Hong-Yu, LOU Yu-Ming. Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1291-1302 doi:10.11720/wtyht.2025.0059

0 引言

青藏高原主体位于特提斯成矿域东段,目前已形成三江成矿带、冈底斯成矿带、班公湖—怒江成矿带和喜马拉雅成矿带的资源分布格局,是我国重要的铜多金属资源储备和开发基地[1-3]。其中,冈底斯成矿带位于青藏高原南部,目前带内已发现多个大型—超大型斑岩—矽卡岩铜多金属矿床,成矿地质条件及找矿潜力优越,一直受到国内外学者的广泛关注[4]。雄村矿集区位于冈底斯成矿带的中段南缘,是带上目前发现的与新特提斯洋俯冲相关的超大型斑岩型铜金资源基地,具有良好的成矿地质条件,区内矿产资源丰富,找矿潜力巨大[5-6]

前人已经对雄村矿集区的成矿地质背景、地质特征、矿床成因以及成矿预测等进行了详细的研究,积累了大量的基础地质资料与科研资料[7-13],并通过岩石、土壤地球化学测量在雄村矿集区进行了综合异常圈定工作[11-12]。然而,前人开展的勘查工作主要集中在雄村矿集区内,矿集区外围的日热、烈朗—吉拉—塘河、汤白等区域尽管有矿化线索,但找矿进展不大、找矿潜力尚不明确。在雄村外围能否发现“雄村式”的超大型斑岩铜金矿,是否具有较大的找矿前景,这些问题制约了区域找矿的突破。同时,雄村矿集区已知矿床的深边部工作程度较低,同样影响着雄村矿集区的找矿突破,仍然需要进一步开展相关研究工作。2005年至今,研究团队在雄村矿集区及外围进行了1∶50 000水系沉积物测量工作,但未进行全面系统研究,对于水系沉积物地球化学测量的异常结果缺乏深入评价。为了进一步推动雄村矿集区及其外围的找矿突破,本次研究对团队前期完成的1∶50 000水系沉积物地球化学测量成果进行了资料整合和二次开发,通过对水系沉积物地球化学数据的整合与处理,分析水系沉积物地球化学特征,圈定综合异常,评价找矿潜力,为区域实现找矿突破提供重要支撑。

1 研究区地质背景

拉萨地块位于我国青藏高原南部,南以雅鲁藏布缝合带(YZSZ)为界,北以班公湖—怒江缝合带(BNSZ)为界,是一条近EW向的巨型构造-岩浆带(图1)[14-15]。拉萨地块由北向南被狮泉河—纳木错蛇绿混杂岩带(SNMZ)、洛巴堆—米拉山断裂带(LMF)依次分割为北拉萨地块、中拉萨地块和南拉萨地块(图1b)[15-16]。冈底斯成矿带位于拉萨地体南部,是我国重要的矿产资源储备基地[1-3,17]。该成矿带以发育与岩浆—热液作用有关的Cu、Mo、Au、Ag、Pb-Zn等矿床为特点,经历了新特提斯洋俯冲到印度大陆碰撞的岩浆—构造演化过程,主要形成了侏罗纪(180~162 Ma)俯冲期斑岩型Cu-Au矿床(如雄村矿床)、古新世—始新世(65~50 Ma)主碰撞矽卡岩—浅成低温热液型Pb-Zn-Ag矿床(如蒙亚啊、勒青拉、斯弄多、纳如松多等矿床)和中新世(20~10 Ma)后碰撞伸展斑岩—矽卡岩型Cu-Mo矿床(如甲玛、驱龙、厅宫、冲江、朱诺等矿床)[1,2,4,18-23]

图1

图1   雄村矿集区及其外围大地构造位置(a、b)及地质简图(c)[36]

Fig.1   The location of the Xiongcun mining area and its surrounding geological structures (a, b) and geological map (c)[36]


研究区位于冈底斯成矿带中段南缘,区内地层主要分布有中三叠统—中侏罗统比马组、中—下侏罗统雄村组、渐新统大竹卡组、始新统秋乌组以及第四系等(图1c)。其中,中三叠统—中侏罗统比马组岩性主要由玄武岩、安山岩、英安岩及少量砂岩、灰岩等组成,锆石U-Pb年龄显示其形成于184~175 Ma[24-25];下—中侏罗统雄村组地层为一套火山沉积岩,锆石U-Pb定年显示其形成于195~176 Ma,岩性以火山集块岩、火山角砾岩、凝灰岩为主,其次为砾岩、砂岩、粉砂岩、炭质页岩/板岩及少量不连续分布的灰岩[13,26-28]。此外,研究区南部还分布有始新统秋乌组,主要岩性为灰砾岩、砂岩夹粉砂岩、页岩及煤层;渐新统大竹卡组主要由一套灰色陆相碎屑岩夹火山岩组成,包括页岩、晶屑凝灰岩、砂岩等;第四系主要分布于冲沟和河流附近,主要为冲、洪积物等[29]。区域内侵入岩极其发育,出露面积较大,各类侵入体大小不等,形态各异,具有多期侵入的特点,呈岩基和岩株的形式产出。区内侵入岩主要发育三期:石炭纪岩体分布于雄村矿集区西南部,岩性包括角闪辉长岩、角闪岩和闪长岩;侏罗纪岩体主要分布于雄村矿集区和汤白矿区附近,岩性主要包括角闪石英闪长斑岩、石英闪长斑岩、斑状花岗岩等,形成时代集中于195~165 Ma[30-34];始新世岩体分布范围较广,主要包括黑云母二长花岗岩、黑云母花岗闪长岩等,并有大规模的辉绿岩脉侵入到早期岩体中,形成时代集中在52~47 Ma[35]

区域上断裂构造发育,其中北部主要构造为EW向谢通门—努玛韧性剪切带,发育于始新世黑云二长花岗岩中,大部分已变质成糜棱岩及糜棱岩化岩石。受剪切带影响,剪切带两侧次级断裂发育,岩石破碎强烈,沿裂隙贯入后期岩脉。另外,研究区南部主体构造为断裂构造,呈近EW向、NW—SE向、近SN向和NE—SW向(图1c),其中NW—SE向断裂构造与成矿关系密切。研究区西南部还发育有轴线呈近EW向和NW—SE向的褶皱构造。

研究区内发现雄村超大型斑岩铜金矿集区,主要由1号、2号、3号矿体和洞嘎金矿等组成,1~3号矿体主要受控于NE—SE走向的侏罗纪斑岩体,而洞嘎金矿为2号矿体外围分布的次浅成低温热液型矿床[37]。1、2、3号矿体中石英—辉钼矿脉的辉钼矿Re-Os等时线年龄分别为(161.5±2.7) Ma、(172.6±2.1) Ma、(173±2.5) Ma[6],洞嘎Au矿的含Au绿泥石—硫化物脉中黄铁矿Re-Os等时线年龄为(180.4±2.8) Ma[37]。因此,雄村斑岩成矿系统主要发育两期成矿作用,早期为2号、3号矿体和洞嘎Au矿为代表的斑岩型Cu-Au矿化和斑岩体外围的Au矿化,形成时代为180~173 Ma;晚期为1号矿体为代表的斑岩型Cu-Au矿化和晚期叠加的次浅成低温热液型Zn-Ag-Au-Cu±Pb矿化,形成时代为162 Ma。此外,研究区内还发现汤白斑岩型铜矿、则莫多拉矽卡岩型铜矿等多个矿点,但勘查程度较低。

2 样品采集与数据分析

2.1 样品的采集与测试

1∶50 000水系沉积物地球化学测量数据来自研究团队于2005年至今在雄村矿集区及外围开展的矿产勘查工作[36,38-44],共计1 830个样品数据,实际完成1∶50 000水系沉积物地球化学测量面积约531.88 km2(图2),平均采样密度3.4件/km2。依据研究区地质特征及水系发育条件,采样点尽量布设在一级水系末端和分支水系口上,当一级水系长度大于500 m时,在二级或三级水系中增加采样点,使每一个采样点控制的汇水盆地面积大致在0.25 km2左右。在水系不发育地段,样点布设在受水面积大的冲沟、凹地中,采样部位选择在间歇性水流区或者很少水流的干沟中;在常年有水流的水系,采样部位选择水流变缓处、水流停滞处、河道转弯内侧、转石背后等有较多细粒物质聚集的位置。在采样点附近,沿水系上下20~30 m范围内的3~5处采集以淤泥、粉砂为主的物质组成一个样品。采样点分布符合《地球化学普查规范1∶50 000》(DZ/T 0011-91)及《地球化学普查规范1∶50 000》(DZ/T 0011—2015),较好地控制了研究区的汇水面积,布设均匀、合理。

图2

图2   雄村矿集区及其外围水系沉积物地球化学测量采样范围

Fig.2   Sampling range of geochemical measurement of stream sediments in Xiongcun ore concentration area and its periphery


样品原始质量大于500 g,保证样品过40~60目筛后质量≥300 g。加工后的样品及时编号并分为2份装袋,1份(150 g)送化验室分析,1份(150 g)装入副样库保存。样品测试元素为Au、Ag、Cu、Pb、Zn共5种,全部样品送至西南冶金分析测试所进行样品加工与分析测试。其中,Au采用发射光谱法(AES),Cu、Pb、Zn采用原子吸收光谱法(AAS),Ag采用火焰原子吸收光谱法(FAAS)测定,所有元素的分析检出限均符合规范要求。水系沉积物样品的分析以及质量控制均符合《地球化学普查规范1∶50 000》(DZ/T 0011—2015)、《岩石矿物分析试样制备》(DZ/T 0130.2—2006)相关要求。

2.2 地球化学参数特征

利用SPSS、Excel软件对水系沉积物样品分析结果进行统计,得到研究区样品中5种元素含量的最大值、最小值、平均值、中位数、标准离差、变异系数、浓度克拉克值等参数特征(表1)。

表1   研究区水系沉积物地球化学参数

Table 1  Geochemical parameter of stream sediments in the study area

AuAgCuPbZn
最大值44304.786197916901235
最小值0.30.047.081.546.9
平均值16.440.1749.223.3365.77
中位数1.80.1427.616.545.2
标准离差132.980.21105.6747.2983.87
变异系数8.091.222.152.031.28
区域地壳丰度(西藏)1.60.08523.828.177.4
富集系数10.27522.0670.830.85

注:元素含量单位:Au为10-9,其余元素为10-6;变异系数=(标准离差/平均值)×100%;富集系数=(元素含量平均值/区域地壳丰度)×100%[45-47];区域地壳丰度(西藏)引自李光明等[3]及韩鹏等[11]

新窗口打开| 下载CSV


富集系数为特定地质体(矿床、岩体或矿物等)内某元素平均含量与该元素区域地壳丰度的比值,可以反映出元素相对富集或贫化的趋势[46]。富集系数通过量化元素富集程度建立分级标准:当比值超过1.5时为显著富集,1.2~1.5为较富集,0.8~1.2为正常分布,0.5~0.8为较贫化,低于0.5则属于显著贫化范畴[48]。变异系数CV是描述数据变异程度的指标,CV越大,表示该元素分布越不均匀,元素迁入以及带出作用越明显,找矿意义也就越大。其具体分级标准为:CV超过1.0(强变异型)指示元素空间分布极不均匀,0.7~1.0(变异型)反映出明显离散性,0.5~0.7(弱变异型)显示较弱的离散性,而CV低于0.5(均一型)则代表元素呈均匀分布状态[11,49]

研究区内Au、Cu、Ag的富集系数均大于1.5,显示这些元素在局部区域具有较强的富集能力,其中尤以Au最为显著,Cu、Ag次之。此外,Au、Cu、Pb的变异系数大于2,Ag、Zn的变异系数则在1~1.5之间,均属于强变异型元素。这表明研究区水系沉积物样品中这些元素的含量分布极不均匀,不同地区变化较大。综上所述,本文认为研究区内Au、Cu离散程度大,分异性强,富集能力强。

3 水系沉积物地球化学特征

3.1 单元素异常特征

探索性数据分析方法(EDA法)属稳健统计学的范畴,相比于经典统计学,EDA法不以数据是否服从正态分布为假设性前提[50-52]。EDA方法可以发现并表达蕴含在数据中的深层信息,阐述数据的实际情况和意义,从而使数据能够以更容易、更客观的方式被利用[53-55]。因此,本文采用EDA法计算研究区水系沉积物地球化学元素下限(表2),并使用Surfer软件对分析数据进行离散网格化处理,以异常下限值的1倍、2倍、4倍作为边界来划分浓度分带,背景值则取中位数。最后,利用Surfer软件绘制Au、Cu、Pb、Zn、Ag单元素异常图(图3)。

表2   研究区水系沉积物地球化学异常下限

Table 2  Geochemical parameter table of stream sediments in the study area

参数w(Au)
/10-9
w(Cu)
/10-6
w(Pb)
/10-6
w(Zn)
/10-6
w(Ag)
/10-6
背景值1.827.616.5450.14
异常下限669451230.3

新窗口打开| 下载CSV


图3

图3   研究区水系沉积物元素异常分布

Fig.3   Element anomaly of stream sediments in the study area


由元素异常分布可知:Cu异常主要集中分布于靠近雄村矿集区1号、2号矿体的位置,在雄村矿集区西北部也有零散分布的椭圆形异常(图3c),Cu异常强度较高、浓集中心明显,内、中带异常发育,局部发育外带,异常范围内出露下—中侏罗统雄村组凝灰岩地层和早侏罗世石英闪长斑岩;Au异常主要分布于雄村矿集区内,与已知矿体的套合程度较好,在研究区西北部也分布有小面积椭圆形异常(图3),Au异常分布面积广、强度较高,异常以内带为主,浓集中心明显,其中雄村矿集区内Au异常主要分布于下—中侏罗统雄村组凝灰岩地层、早侏罗世石英闪长斑岩和中侏罗世石英闪长斑岩中,研究区西北部异常则主要分布于中细粒黑云角闪石英闪长岩中,异常较为分散;Ag异常的分布特征与Au相似,但异常分布面积较小,主要分布在雄村矿集区,在研究区西部也有零散分布的椭圆形异常,与Au、Cu异常的套合关系好(图3b);Pb异常与Zn异常具有相似的分布特征(图3d、e),主要呈环状、半环状分布于Cu、Au、Ag异常周围,异常浓集中心明显,外、中带发育,局部发育内带,套合关系较好。

3.2 元素地球化学分布组合特征

3.2.1 相关分析

运用SPSS软件对研究区1 830组水系沉积物数据进行相关分析,得出相关系数矩阵(表3)。由表3可知,Cu与Au、Ag、Zn之间均存在显著的相关性。其中,Au与Cu的相关系数最高,为0.614,相关性显著;Cu与Zn之间相关系数为0.662,相关性显著;Ag与Cu、Pb、Zn相关系数为0.480、0.327、0.339,也具有相关性;Pb与Zn元素之间的相关系数达到0.574,相关性显著,证明两者可能为相似地球化学背景的产物。综上所述,本文认为研究区内Ag-Pb-Zn元素组合与Cu-Au元素成矿的地球化学关系密切。

表3   研究区水系沉积物分析元素相关矩阵

Tab.3  Correlation matrix of analysis elements of stream sediments in the study area

元素AuAgCuPbZn
Au1
Ag0.4521
Cu0.6140.4801
Pb0.4790.3270.3651
Zn0.5660.3390.6620.5741

新窗口打开| 下载CSV


3.2.2 聚类分析

通过SPSS软件对研究区Au、Cu、Pb、Zn、Ag的水系沉积物测量原始数据进行标准化处理,再进行R型聚类分析,得到其聚类分析谱系(图4)。可以看出,当欧氏距离为16左右,水系沉积物样品中所测试的元素可以分为以下3类组合:Cu-Au-Zn、Pb、Ag。

图4

图4   研究区水系沉积物元素R型聚类分析谱系

Fig.4   Dendrogram of R-mode cluster analysis of elements in stream sediments in the study area


通过对单元素异常特征、地球化学参数特征、相关性分析及聚类分析的综合研究,可知研究区内Cu、Au异常强度大、浓集中心明显,两者分异性强,离散程度大,富集能力强;Cu、Au元素分群为一组,证明研究区内Cu、Au可能存在共生或者伴生关系。综上所述,认为研究区元素组合为Cu-Au元素组合及Ag-Pb-Zn元素组合,其中主成矿元素为Cu、Au,Ag、Pb和Zn可以作为Cu、Au的找矿指示元素。

4 综合异常圈定与评价

综合研究区各元素参数统计特征、单元素异常特征、多元统计分析结果以及研究区地形、地质特征差异,以异常元素套合情况好、元素组合与矿产或地质体关系密切、地理位置的重叠为原则进行综合异常的圈定,并对研究区内异常叠加情况不佳、成矿地质条件差的异常进行选择性的去除或者分割。基于以上原则,在单元素异常图基础上,划分出4个以Cu、Au异常为主的综合异常区(HS-1、HS-2、HS-3、HS-4)(图5)。在综合异常区圈定的基础上,对上述4个异常区开展了相应的异常区查证工作,为雄村矿集区外围及深边部的找矿突破提供了清晰的方向。

图5

图5   雄村矿集区及其外围水系沉积物元素综合异常

Fig.5   Comprehensive anomaly of elements in stream sediments in Xiongcun ore concentration area and its periphery


4.1 HS-1综合异常区

HS-1异常区位于雄村矿集区,异常面积为60.74 km2,异常展布近EW向,形态似花瓣状。该异常内分布有Cu、Au、Ag、Pb、Zn异常,异常浓集中心明显,主成矿元素Cu、Au异常强度大、规模高,元素异常围绕已揭露矿化体分布。Ag、Pb、Zn异常呈环状围绕Cu、Au异常展布。异常区主要出露下—中侏罗统雄村组凝灰岩地层、早侏罗世石英闪长斑岩和中侏罗世石英闪长斑岩,分布有雄村1号、2号、3号矿体和洞嘎金矿。异常区成矿地质条件与已知矿体极为相似,有利的控矿地层条件(下—中侏罗统雄村组凝灰岩)以及含矿斑岩(中侏罗世石英闪长斑岩、早侏罗世石英闪长斑岩)在异常区内出露面积广泛,并且发育有钾硅酸盐化蚀变、黄铁绢英岩化以及青磐岩化等蚀变;异常区内NW—SE向次级断裂发育,可能为成矿提供了良好的热液通道。

在1、2号矿体之间,存在较好的Cu-Au-Ag异常(图3),根据早期勘查成果,在2号矿体南部和1号矿体北部,矿体尚未完全圈闭[37],还存在巨大找矿潜力,因此,本研究对该区域开展了地表连续捡块异常证工作。连续捡块揭示明显的铜金银矿化,矿化围岩为玄武质凝灰岩和安山质凝灰岩,蚀变类型为黄铁绢英岩化,发育网脉状石英—硫化物脉,金属硫化物主要为黄铁矿和黄铜矿,局部可见孔雀石化(图6)。捡块样品分析测试结果显示矿石品位:Cu,0.05%~0.19%;Ag,1.62%~14.00 g/t;Au,0.06%~2.69 g/t;以上均已达矿体边界品位。

图6

图6   HS-1异常区矿化露头及手标本照片

Fig.6   Photos of mineralized outcrops and hand specimens in the HS-1 anomaly area


综上所述,HS-1综合异常区地质、地球化学成矿条件良好,且目前已发现多个找矿线索,并发育多个大型铜金矿床;因此,该综合异常区有望进一步扩大找矿前景,寻找铜、金多金属矿产的潜力巨大,后续亟需开展进一步的工程验证工作。

4.2 HS-2异常区

HS-2异常位于日热地区东北部鲁康擦莫村附近,距雄村矿集区西北部约2.4 km,异常面积为3 km2。该异常区元素以Cu、Au为主,伴有Ag、Pb和Zn,且在异常区北侧套合相对较好,中部具有Au单元素异常高值点突出的特征。异常区出露地层为中三叠统—中侏罗统比马组火山岩,岩性主要为安山岩、英安岩。出露侵入岩主要为始新世黑云母花岗岩,受NE—SW向的韧性剪切带控制。异常查证过程中发现异常区边部的黑云母花岗岩中发育有石英—方铅矿脉,硫化物主要为方铅矿;异常区中心矿化类型以脉状矿化为主,蚀变以绿帘石化为主。该矿化带中发育大量硫化物脉,硫化物以黄铁矿和黄铜矿为主,部分硫化物氧化为褐铁矿和孔雀石(图7)。蚀变带顶部可见黑色千枚岩,内部无矿化现象。

图7

图7   HS-2异常区矿化露头及手标本照片

Fig.7   Mineralized outcrops and hand specimens in the HS-2 anomaly area


对该异常开展了连续捡块异常查证工作,捡块取样分析结果显示,该异常区捡块样品品位为:Cu,0.01%~0.07%;Mo,0.001%~0.003%;Ag,1.00~12.70 g/t;Au,0.01~0.08 g/t。结合水系沉积物地球化学测量显示的元素异常浓集中心明显、元素异常分带性强、具有银矿化显示等特征,该区具有寻找银多金属矿的找矿潜力,可开展进一步的勘查工作。

4.3 HS-3异常区

HS-3异常位于烈朗地区中部,谢通门县卡嘎镇附近,距离雄村矿集区北西约6 km,异常面积3.5 km2。异常元素为Au,伴生元素为Pb、Ag、Zn,异常强度较大,具有三级异常套叠、圈闭好、单元素异常高值点突出、组合异常套合极好等特点。异常区出露地层主要为第四系冲洪积层,由砂、砂砾石和亚砂土组成。侵入岩主要为始新世黑云钾长花岗岩、黑云二长花岗岩和黑云母角闪花岗岩,分别具有浅灰白色粗中粒斑状结构、灰白—灰色中粒斑状结构和灰绿色中粒结构,受到NE—SW向的韧性剪切带控制。黑云钾长花岗岩中发育绿泥石—绿帘石化和高岭土化蚀变,局部可见电气石脉、方解石脉和高岭石脉,有明显风化壳、火烧皮和硅化,风化壳下侧出露孔雀石化(图8),硅化中石英由于微量元素含量差异呈现出烟灰色、淡粉色和白色。

图8

图8   HS-3异常区野外露头及手标本照片

Fig.8   Field outcrops and hand specimens in the HS-3 anomaly area


对该异常区开展了连续捡块异常查证,样品测试结果显示捡块样品品位为:Cu,0.002%~0.029%;Mo均低于检测限;Ag,1.04~1.8 g/t;Au,0.01~0.02 g/t。由此可见,大部分成矿元素低于检测限,仅局部Ag具有矿化显示。但由于该地区水系沉积物地球化学异常套合极好,推测该异常区深部可能存在隐伏矿体,具有寻找银多金属矿的找矿潜力,后续可开展进一步查证工作。

4.4 HS-4异常区

HS-4异常位于烈朗地区北部夏角村附近,距离雄村矿集区北西约4.8 km,异常面积4.5 km2。异常元素主要为Cu、Au,伴生元素为Pb、Ag、Zn。异常呈近椭圆状,强度较大,具有三级异常套叠、圈闭好、单元素异常高值点突出等特点。该地区地形切割较深,异常区边缘主要为始新世黑云角闪二长花岗岩,中心为始新世高硅花岗岩,岩体内基本未看见明显矿化和热液蚀变。高硅花岗岩中发育石英脉和电气石脉,部分石英和角闪石具有明显定向排列特征,主要受控于区域韧性剪切作用(图9)。

图9

图9   HS-4异常区野外露头及手标本照片

Fig.9   Field outcrops and hand specimens in the HS-4 anomaly area


虽然该异常区异常浓集中心明显,但其上游靠近HS-2异常区,且异常区地势较低,因此推测可能为上游附近HS-2异常中的水系沉积物搬运至此,导致此处水系沉积物地球化学特征呈现异常。此外,在异常查证过程中,发现沟口存在少量含孔雀石转石,表明该区异常并非矿致异常,后续找矿潜力较小,其上游HS-2异常应为下一步找矿勘查的重点。

5 结论

1)通过对研究区1∶50 000水系沉积物地球化学样品测试数据进行多元统计分析,并结合各单元素异常特征分析,确定Cu、Au元素的地质和地球化学找矿条件优异,成矿潜力较强,是主要成矿元素,Ag、Pb、Zn为主成矿元素的伴生指示元素。

2)本区主攻矿种为铜、金,依据水系沉积物综合异常、成矿地质背景、矿产分布情况等,在全区共圈出4处综合异常区,其中HS-1、HS-2异常区综合异常强度最高、规模最大,浓集明显。

3)通过对圈定的综合异常进行评价以及地表异常查证,进一步提出了雄村矿集区及其外围找矿工作部署的地质、地球化学方面的证据,综合认为该区域找矿潜力较大,具有良好的找矿前景。

参考文献

Hou Z Q, Yang Z M, Qu X M, et al.

The miocene gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen

[J]. Ore Geology Reviews, 2009, 36(1/3):25-51.

[本文引用: 3]

唐菊兴, 王勤, 杨欢欢, .

西藏斑岩—矽卡岩—浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力

[J]. 地球学报, 2017, 38(5):571-613.

[本文引用: 1]

Tang J X, Wang Q, Yang H H, et al.

Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet

[J]. Acta Geoscientica Sinica, 2017, 38(5):571-613.

[本文引用: 1]

李光明, 张林奎, 焦彦杰, .

西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义

[J]. 矿床地质, 2017, 36(4):1003-1008.

[本文引用: 3]

Li G M, Zhang L K, Jiao Y J, et al.

First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt,southern Tibet

[J]. Mineral Deposits, 2017, 36(4):1003-1008.

[本文引用: 3]

Hou Z Q, Duan L F, Lu Y J, et al.

Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen

[J]. 2015, 110(6):1541-1575.

[本文引用: 2]

郎兴海, 陈毓川, 唐菊兴, .

西藏谢通门县雄村斑岩型铜金矿床成因讨论:来自元素的空间分布特征的证据

[J]. 地质论评, 2010a, 56(3):384-402.

[本文引用: 1]

Lang X H, Chen M C, Tang J X, et al.

A discussion on genesis of Xiongcun porphyry copper-gold deposit,Xietongmen,Xizang(Tibet):Evidence from elements spatial distribution characteristics

[J]. Geological Review, 2010a, 56(3):384-402.

[本文引用: 1]

郎兴海, 郭文铂, 王旭辉, .

西藏雄村矿集区含矿斑岩成因及构造意义:来自年代学及地球化学的约束

[J]. 岩石学报, 2019, 35(7):2105-2123.

[本文引用: 2]

Lang X H, Guo W B, Wang X H, et al.

Petrogenesis and tectonic implications of the ore-bearing porphyries in the Xiongcun district:Constraints from the geochronology and geochemistry

[J]. Acta Petrologica Sinica, 2019, 35(7):2105-2123.

[本文引用: 2]

唐菊兴, 黄勇, 李志军, .

西藏谢通门县雄村铜金矿床元素地球化学特征

[J]. 矿床地质, 2009, 28(1):15-28.

[本文引用: 1]

Tang J X, Huang Y, Li Z J, et al.

Element geochemical characteristics of Xiongcun Cu-Au deposit in Xaitongmen County,Tibet

[J]. Mineral Deposits, 2009, 28(1):15-28.

[本文引用: 1]

郎兴海, 唐菊兴, 陈毓川, .

西藏谢通门县雄村斑岩型铜金矿区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义

[J]. 矿物岩石, 2010, 30(4):55-61.

Lang X H, Tang J X, Chen M C, et al.,

2010b.Re-Os dating of molybdenite from orebody no.Ⅱ of the Xiongcun porphyry copper-gold metallogenic district,Xietongmen,Tibet and its geological significance

[J]. Mineralogy and Petrology,2010, 30(4):55-61.

郎兴海, 唐菊兴, 李志军, .

西藏谢通门县雄村铜金矿区及其外围的找矿前景地球化学评价

[J]. 地质与勘探, 2012, 48(1):12-23.

Lang X H, Tang J X, Li Z J, et al.

Geochemical evaluation of exploration prospect in the Xiongcun copper-gold district and peripheral areas,Xietongmen County,Tibet

[J]. Geology and Exploration, 2012, 48(1):12-23.

郎兴海, 崔志伟, 王旭辉, .

西藏谢通门县雄村矿集区综合信息找矿模型及靶区预测

[J]. 地球学报, 2017, 38(5):790-802.

Lang X H, Cui Z W, Wang X H, et al.

Comprehensive information prospecting model and target prediction for the Xiongcun Area,Xietongmen County,Tibet

[J]. Acta Geoscientica Sinica, 2017, 38(5):790-802.

韩鹏, 郎兴海, 邓煜霖, .

西藏谢通门县雄村矿区外围土壤地球化学特征及异常评价

[J]. 物探化探计算技术, 2018, 40(6):812-819.

[本文引用: 3]

Han P, Lang X H, Deng Y L, et al.

Soil geochemical characteristics and abnormal evaluation of Xiongxcun district peripheral areas,Xietongmen county,Tibet

[J]. Computing Techniques For Geophysical and Geochemical Exploration, 2018, 40(6):812-819.

[本文引用: 3]

Lang X H, Liu D, Deng Y L, et al.

Detrital zircon geochronology and geochemistry of Jurassic sandstones in the Xiongcun district,southern Lhasa subterrane,Tibet,China:Implications for provenance and tectonic setting

[J]. Geological Magazine, 2019, 156(4):683-701.

[本文引用: 1]

Lang X H, Wang X H, Deng Y L, et al.

Hydrothermal evolution and ore precipitation of the No.2 porphyry Cu-Au deposit in the Xiongcun district,Tibet:Evidence from cathodoluminescence,fluid inclusions,and isotopes

[J]. Ore Geology Reviews, 2019, 114:103141.

[本文引用: 2]

潘桂棠, 莫宣学, 侯增谦, .

冈底斯造山带的时空结构及演化

[J]. 岩石学报, 2006, 22(3):521-533.

[本文引用: 1]

Pan G T, Mo X X, Hou Z Q, et al.

Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution

[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.

[本文引用: 1]

Zhu D C, Zhao Z D, Niu Y L, et al.

The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth

[J]. Earth and Planetary Science Letters, 2011, 301(1/2):241-255.

[本文引用: 2]

Zhu D C, Zhao Z D, Niu Y L, et al.

The origin and pre-Cenozoic evolution of the Tibetan Plateau

[J]. Gondwana Research, 2013, 23(4):1429-1454.

[本文引用: 1]

邓军, 杨立强, 王长明, .

三江特提斯复合造山与成矿作用研究进展

[J]. 岩石学报, 2011, 27(9):2501-2509.

[本文引用: 1]

Deng J, Yang L Q, Wang C M, et al.

Superimposed orogenesis and metallogenesis in Sanjiang Tethys

[J]. Acta Petrologica Sinica, 2011, 27(9):2501-2509.

[本文引用: 1]

Zheng Y C, Fu Q, Hou Z Q, et al.

Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane,southern Tibet

[J]. Ore Geology Reviews, 2015, 70:510-532.

[本文引用: 1]

Lin B, Tang J X, Tang P, et al.

Multipulsed magmatism and duration of the hydrothermal system of the giant Jiama porphyry Cu system,Tibet,China

[J]. Economic Geology, 2024, 119(1):201-217.

Sun X, Li R Y, Si X B, et al.

Timing and mechanism of ore precipitation in porphyry Cu systems:Insight from LA-ICP-MS analysis of fluid inclusions and in situ oxygen isotope analysis of hydrothermal quartz at Zhunuo porphyry Cu deposit,China

[J]. Economic Geology, 2024, 119(3):593-616.

Xue Q Q, Zhang L P, Chen S, et al.

The source and ore-forming processes of post-collisional Qulong porphyry Cu-Mo deposit in Tibet constrained by Mo isotopes

[J]. Chemical Geology, 2024, 652:122025.

Wang X H, Lang X H, Turlin F, et al.

Copper behavior in arc-back-arc systems:Insights into the porphyry Cu metallogeny of the gangdese belt,southern Tibet

[J]. Mineralium Deposita, 2024, 59(1):133-154.

Zhang P, Li Z, Zhao F, et al.

Petrogenesis and tectonic implications of the granite porphyry in the sinongduo Ag-Pb-Zn deposit,central Tibet:Constraints from geochronology,geochemistry,and Sr-Nd isotopes

[J]. Minerals, 2024, 14(7):710.

[本文引用: 1]

Lang X H, Deng Y L, Wang X H, et al.

Geochronology and geochemistry of volcanic rocks of the Bima Formation,southern Lhasa subterrane,Tibet:Implications for early Neo-Tethyan subduction

[J]. Gondwana Research, 2020, 80:335-349.

[本文引用: 1]

Deng Y L, Lang X H, Wang X H, et al.

Early Mesozoic arc-back-arc system in the leading edge of the Tibetan Plateau

[J]. Lithos, 2021, 406:106530.

[本文引用: 1]

曲晓明, 侯增谦, 李佑国.

S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示

[J]. 地质通报, 2002, 21(11):768-776.

[本文引用: 1]

Qu X M, Hou Z Q, Li Y G.

Indications of S and Pb isotopes of the Gangdese Porphyry Copper Belt for the ore-forming source of material source and material recycling within the orogenic belt

[J]. Geological Bulletin, 2002, 21(11):768-776.

[本文引用: 1]

唐菊兴, 黎风佶, 李志军, .

西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os 年龄的证据

[J]. 矿床地质, 2010, 29(3):461-475.

Tang J X, Li F J, Li Z J, et al.

Time limit for formation of main geological bodies in Xiongcun copper-gold deposit,Xietongmen County,Tibet:Evidence from zircon U-Pb ages and Re-Os age of molybdenite

[J]. Mineral Deposits, 2010, 29(3):461-475.

何青, 解鸿儒, 郎兴海, .

西藏谢通门雄村地区洞嘎金矿赋矿凝灰岩的年代学和地球化学特征

[J]. 地质论评, 2023, 69(5):1694-1718.

[本文引用: 1]

He Q, Xie H R, Lang X H, et al.

Geochronological and geochemical characteristics of the ore-bearing tuff of Dongga gold deposit in the Xiongcun area,Xizang (Tibet)

[J]. Geological Review, 2023, 69(5):1694-1718.

[本文引用: 1]

呼建雄, 姚胜, 王贝, .

谢通门县幅(H45E016018)仁钦则幅(H45E016019)东嘎幅(H45E016020)艾玛幅(H45E016021)1∶5万区域地质调查报告

[R]. 西安:陕西省地矿局区域地质矿产研究院, 2014.

[本文引用: 1]

Hu J X, Yao S, Wang B, et al.

1∶50 000 regional geological survey report of the Xietongmen County sheet (H45E016018),Rinqênzê sheet (H45E016019),Donggar sheet (H45E016020) and Ngamring sheet (H45E016021)

[R]. Xi'an:Institute of Regional Geology and Mineral Resources,Shaanxi Bureau of Geology and Mineral Resources, 2014.

[本文引用: 1]

Lang X H, Tang J X, Li Z J, et al.

U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt,southern Tibet,PRC

[J]. Journal of Asian Earth Sciences, 2014, 79:608-622.

[本文引用: 1]

郎兴海, 邓煜霖, 王旭辉, .

西藏雄村矿区Ⅲ号矿体硫、铅同位素特征及成矿物质来源

[J]. 地质科技情报, 2018, 37(4):1-9.

Lang X H, Deng Y L, Wang X H, et al.

Geochemical characteristics of sulfur and lead isotope compositions and implications for the sourced of metals from No.Ⅲ ore body in Xiongcun Mining Area,Tibet

[J]. Geological Science and Technology Information, 2018, 37(4):1-9.

王旭辉, 郎兴海, 邓煜霖, .

西藏拉萨地体南缘汤白地区始新世辉绿岩脉——新特提斯洋壳断离的证据

[J]. 中国地质, 2019, 46(6):1336-1355.

Wang X H, Lang X H, Deng Y L, et al.

Eocene diabase dikes in the Tangbai area,southern margin of Lhasa terrane,Tibet:Evidence for the slab break-off of the Neo-Tethys Ocean

[J]. Geology in China, 2019, 46(6):1336-1355.

Wang X H, Lang X H, Tang J X, et al.

Early-Middle Jurassic (182-170 Ma) Ruocuo adakitic porphyries,southern margin of the Lhasa terrane,Tibet:Implications for geodynamic setting and porphyry Cu-Au mineralization

[J]. Journal of Asian Earth Sciences, 2019, 173:336-351.

Wang X H, Lang X H, Tang J X, et al.

Early Carboniferous back-arc rifting-related magmatism in southern Tibet:Implications for the history of the Lhasa terrane separation from Gondwana

[J]. Tectonics, 2020, 39(10):e2020TC006237.

[本文引用: 1]

Deng Y L, Lang X H, Klemd R, et al.

Origin of Early Eocene diabase dikes in the southern Lhasa terrane:Implications for the Neo-Tethyan slab breakoff

[J]. Lithos, 2024, 466:107481.

[本文引用: 1]

唐菊兴, 李志军, 郎兴海, .

西藏自治区谢通门县雄村矿区铜矿勘探报告

[R]. 北京: 中国地质科学院矿产资源研究所, 2012.

[本文引用: 3]

Tang J X, Li Z J, Lang X H, et al.

Exploration report of the copper deposit in the Xiongcun Mining Area,Xietongmen County,Tibet Autonomous Region

[R]. Beijing: Institute of Mineral Resources,Chinese Academy of Geological Sciences, 2012.

[本文引用: 3]

Lang X H, Deng Y L, He Q, et al.

Origin of the Dongga Au deposit in the giant Xiongcun porphyry Cu-Au district,Tibet,China:Constraints from multiple isotopes (Re,Os,He,Ar,H,O,S,Pb) and fluid inclusions

[J]. Ore Geology Reviews, 2024, 171:106173.

[本文引用: 3]

唐菊兴, 李志军, 丁枫, .

西藏日喀则谢通门县塘河多金属矿地质预查报告

[R]. 拉萨: 西藏大宇矿业开发有限公司, 2006.

[本文引用: 1]

Tang J X, Li Z J, Ding F, et al.

Geological preliminary survey report of the Tanghe polymetallic deposit,Xietongmen County,Shigatse,Tibet

[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.

[本文引用: 1]

唐菊兴, 李志军, 丁枫, .

西藏日喀则谢通门县吉拉多金属矿地质预查报告

[R]. 拉萨: 西藏大宇矿业开发有限公司, 2006.

Tang J X, Li Z J, Ding F, et al.

Geological preliminary survey report of the Jila polymetallic deposit,Xietongmen County,Shigatse,Tibet

[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.

唐菊兴, 李志军, 丁枫, .

西藏日喀则谢通门县烈朗多金属矿地质预查报告

[R]. 拉萨: 西藏大宇矿业开发有限公司, 2006.

Tang J X, Li Z J, Ding F, et al.

Geological preliminary survey report of the Lielang polymetallic deposit,Xietongmen County,Shigatse,Tibet

[R]. Lhasa: Tibet Dayu Mineral Resources Development Co.,Ltd.,2006.

唐菊兴, 李志军, 郎兴海, .

西藏日喀则市汤白铜矿地质勘查报告

[R]. 成都: 成都理工大学, 2005.

Tang J X, Li Z J, Lang X H, et al.

Geological exploration report of the Tangbai copper deposit,Shigatse,Tibet

[R]. Chengdu: Chengdu University of Technology, 2005.

唐菊兴, 李志军, 郎兴海, .

西藏日喀则谢通门县日热铜矿预查地质报告

[R]. 成都: 成都理工大学, 2005.

Tang J X, Li Z J, Lang X H, et al.

Geological preliminary survey report of the Rire copper deposit,Xietongmen County,Shigatse,Tibet

[R]. Chengdu: Chengdu University of Technology, 2005.

唐菊兴, 李志军, 郎兴海, .

西藏日喀则谢通门县则莫多拉铜矿地质勘查报告

[R]. 成都: 成都理工大学, 2005.

Tang J X, Li Z J, Lang X H, et al.

Geological exploration report of the Zemoduola copper deposit,Xietongmen County,Shigatse,Tibet

[R]. Chengdu: Chengdu University of Technology, 2005.

唐菊兴, 李志军, 郎兴海, .

西藏日喀则谢通门县洞嘎普铜矿地质勘查报告

[R]. 成都: 成都理工大学, 2005.

[本文引用: 1]

Tang J X, Li Z J, Lang X H, et al.

Geological exploration report of the Donggapu copper deposit,Xietongmen County,Shigatse,Tibet

[R]. Chengdu: Chengdu University of Technology, 2005.

[本文引用: 1]

李光明. 西藏冈底斯成矿带及邻区铜铁多金属矿成矿规律与成矿预测[M]. 北京: 地质出版社, 2011.

[本文引用: 1]

Li G M. Metallogenic regularity and prognosis of copper-iron polymetallic deposits in Gangdise metallogenic belt and its adjacent areas in Xizang[M]. Beijing: Geological Publishing House, 2011.

[本文引用: 1]

娄渝明. 基于地质—地球化学信息的西藏雄村矿集区地表和深部成矿预测研究[D]. 成都: 成都理工大学, 2024.

[本文引用: 1]

Lou Y M. Study on surface and deep metallogenic prediction based on geological-geochemical information in Xiongcun District,Tibet[D]. Chengdu: Chengdu University of Technology, 2024.

[本文引用: 1]

胡以铿. 地球化学中的多元分析[M]. 武汉: 中国地质大学出版社, 1991.

[本文引用: 1]

Hu Y K. Multivariate analysis in geochemistry[M]. Wuhan: China University of Geosciences Press, 1991.

[本文引用: 1]

温海成, 杨丽慧, 刘怀金, .

内蒙古阿拉格乌拉地区土壤地球化学特征及找矿预测

[J]. 中国矿业, 2024, 33(S1):532-537.

[本文引用: 1]

Wen H C, Yang L H, Liu H J, et al.

Soil geochemical characteristics and prospecting prediction in Alagewula Area,Inner Mongolia

[J]. China Mining Magazine, 2024, 33(S1):532-537.

[本文引用: 1]

岳国利, 桂新星, 宋立强, .

藏东达翁金矿区土壤地球化学特征与找矿潜力研究

[J]. 地质与勘探, 2023, 59(6):1204-1216.

[本文引用: 1]

Yue G L, Gui X X, Song L Q, et al.

Soil geochemical characteristics and prospecting potential of the Daweng gold mine in eastern Xizang

[J]. Geology and Exploration, 2023, 59(6):1204-1216.

[本文引用: 1]

Tukey J W. Exploratory Data Analysis[M]. London: Addison-Wesley, 1977.

[本文引用: 1]

史长义.

勘查数据分析(EDA)技术的应用

[J]. 地质与勘探, 1993(11):52-58.

Shi C Y.

Application of the exploratory data analysis technique

[J]. Geology and Exploration, 1993(11):52-58.

Carranza E J M.

Geochemical anomaly and mineral prospectivity mapping in gis

[J]. Handbook of Exploration & Environmental Geochemistry, 2009, 104:887-892.

[本文引用: 1]

Reimann C, Filzmoser P, Garrett R G.

Background and threshold:Critical comparison of methods of determination

[J]. Science of the Total Environment, 2005, 346(1/3):1-16.

[本文引用: 1]

李佑国. 基于“3S”技术的攀西地区铜镍铂族元素矿床找矿靶区筛选[D]. 成都: 成都理工大学, 2007.

Li Y G. Screening of prospecting targets for copper-nickel-platinum group element deposits in Panxi area based on“3S” technology[D]. Chengdu: Chengdu University of Technology, 2007.

李前志, 军周, 磊刘, .

岩石地球化学异常下限的确定方法对比:以云南思姑锡矿区为例

[J]. 地质找矿丛论, 2015, 30(3):429-434.

[本文引用: 1]

Li Q Z, Jun Z, Lei L, et al.

Comparison of low limit determination methods of petro-geochemical anomly:Taking Sigu area of Yunnan sa an example

[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(3):429-434.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com