Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 32-40    DOI: 10.11720/wtyht.2025.1327
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于微动勘探研究山西运城盐湖区地热田深部控热控水构造
王鹤宇1(), 武国朋2(), 陈国雄3, 柴建州4, 毛杰4, 王德涛3
1.山西省地球物理化学勘查院有限公司,山西 运城 044004
2.运城学院 物理与电子工程系,山西 运城 044000
3.中国地质大学(武汉) 地质过程与矿产资源国家重点实验室,湖北 武汉 430074
4.山西省地质勘查局 二一四地质队有限公司,山西 运城 044000
Microtremor survey-based investigation of deep geothermal- and water-controlling structures in the Salt Lake geothermal field, Yuncheng City, Shanxi Province, China
WANG He-Yu1(), WU Guo-Peng2(), CHEN Guo-Xiong3, CHAI Jian-Zhou4, MAO Jie4, WANG De-Tao3
1. Shanxi Provincial Institute of Geophysical and Geochemical Exploration, Yuncheng 044004, China
2. Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
4. The 214 Geological Team of Shanxi Provincial Geological Prospecting Bureau, Yuncheng 044000, China
全文: PDF(4299 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

山西运城盐湖区地热田埋藏于人口稠密的城区下方,影响了该地热田的进一步勘查和开发。基于盐湖区地热田深部地温梯度西南高、东北低的分布特征,在运城盐湖区城镇南部设计1条NE向微动剖面,旨在探测盐湖区地热田的深部热储结构及NW向构造展布情况。微动二维速度结构剖面显示,在剖面东部存在一明显的低速异常体,应是由多条NW向张性断裂所形成的断裂破碎带所引起。该隐伏断裂破碎带与盐湖区地热田东北部的低地温梯度异常在空间上大致对应,推测该断裂破碎带可能促使地表冷水快速下渗,从而降低研究区东北部深部岩石的温度,形成较大规模的低温异常带。此外,微动方法揭示的断裂在研究区另一可控源反射地震剖面中可以追溯到,两种方法可以相互补充和验证。本次研究在前人工作的基础上进一步揭示了运城盐湖区地热田的深层地热结构和构造,为该区地热田的勘查和资源评价提供了更多的依据和指导,同时还证明了微动勘探技术在城市地质地热研究中的有效性和优越性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹤宇
武国朋
陈国雄
柴建州
毛杰
王德涛
关键词 微动勘探盐湖区地热田深部热储构造反射地震运城断陷盆地    
Abstract

The Salt Lake geothermal field in Yuncheng City, Shanxi Province, China lies beneath a densely populated urban area, posing significant challenges to further geothermal exploration and extraction. Based on the distribution of geothermal gradients in the geothermal field, which are higher in the southwest and lower in the northeast, a NE-trending microtremor survey profile was arranged in the southern part of Yuncheng City, aimed at investigating the deep geothermal reservoir structure and NW-trending structures in the geothermal field. The 2D velocity structure profile reveals a pronounced low-velocity anomaly in the eastern part, which is supposed to be induced by the fault fracture zone formed by multiple NW-striking tensional faults. Spatially, this concealed fault zone roughly corresponds to the low-geothermal gradient anomaly in the northeastern Salt Lake geothermal field, suggesting that this fault fracture zone might facilitate the rapid infiltration of cold surface water, thereby lowering the temperature of deep rocks in the northeastern part, leading to the formation of a large-scale low-temperature anomaly zone. Additionally, the faults identified by the microtremor survey can be traceable and confirmed in a controlled source reflection seismic profile in the study area, demonstrating the complementary nature of the two methods. This study further reveals the deep geothermal structures of the Salt Lake geothermal field based on previous efforts. This study provides more valuable bases and guidance for future exploration and resource evaluation of geothermal fields in the region while also demonstrating the effectiveness and superiority of the microtremor survey method in research on urban geothermal resources.

Key wordsmicrotremor survey    Salt Lake geothermal field    deep geothermal reservoir    seismic reflection    Yuncheng foult basin
收稿日期: 2024-08-09      修回日期: 2024-11-04      出版日期: 2025-02-20
ZTFLH:  P631  
基金资助:山西省青年基金项目(20210302123374)
通讯作者: 武国朋(1988-),男,博士,讲师,主要研究方向为地热勘查和开发利用、数学地质等。Email:wu15101142103@126.com
作者简介: 王鹤宇(1980-),男,工程硕士,高级工程师,主要从事地球物理勘查工作等。Email:121909075@qq.com
引用本文:   
王鹤宇, 武国朋, 陈国雄, 柴建州, 毛杰, 王德涛. 基于微动勘探研究山西运城盐湖区地热田深部控热控水构造[J]. 物探与化探, 2025, 49(1): 32-40.
WANG He-Yu, WU Guo-Peng, CHEN Guo-Xiong, CHAI Jian-Zhou, MAO Jie, WANG De-Tao. Microtremor survey-based investigation of deep geothermal- and water-controlling structures in the Salt Lake geothermal field, Yuncheng City, Shanxi Province, China. Geophysical and Geochemical Exploration, 2025, 49(1): 32-40.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1327      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/32
Fig.1  研究区地质构造背景
Fig.2  盐湖区地热田地质物探勘查工作分布
Fig.3  微动台阵布设参数
Fig.4  波形一致性检验
Fig.5  运城市盐湖区地热田微动勘探成果
Fig.6  地热田北部可控源反射地震D1叠后偏移剖面及地震解释
[1] 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24.
[1] Pang Z H, Hu S B, Wang J Y. A roadmap to geothermal energy development in China[J]. Science & Technology Review, 2012, 30(32): 18-24.
[2] 郭森, 马致远, 李劲彬, 等. 我国地热供暖的现状及展望[J]. 西北地质, 2015, 48(4): 204-209.
[2] Guo S, Ma Z Y, Li J B, et al. Status and prospects of geothermal heating in China[J]. Northwestern Geology, 2015, 48(4): 204-209.
[3] 刑集善. 山西省西南部断陷盆地地热综合物探成果研究报告[R]. 山西省地质矿产局物理探矿队,1988.
[3] Xing J S. Research Report on Comprehensive Geothermal Exploration Results in the Southwest Fault Basin of Shanxi Province[R]. Geophysical Exploration Team of Shanxi Provincial Bureau of Geology and Mineral Resources,1988.
[4] 薛鹏, 薛铭, 薛晓光. 运城地热利用现状与可持续发展思路[C]// 2016中国环境科学学会学术年会论文集,2016:6.
[4] Xue P, Xue M, Xue X G. Current Status and Sustainable Development Ideas of Geothermal Utilization in Yuncheng[C]// 2016 Proceedings of the Academic Annual Conference of the Chinese Society of Environmental Sciences,2016:6.
[5] 裴发根, 张小博, 王绪本, 等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用——以HLD1井为例[J]. 地球物理学进展, 2021, 36(4): 1432-1442.
[5] Pei F G, Zhang X B, Wang X B, et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar area: Take the well HLD1 as an example[J]. Progress in Geophysics, 2021, 36(4): 1432-1442.
[6] 邹鹏飞, 徐雪球, 程远志, 等. 长三角地区中深层地热资源勘查技术创新与应用[J]. 科技导报, 2023, 41(12): 46-65.
doi: 10.3981/j.issn.1000-7857.2023.12.006
[6] Zou P F, Xu X Q, Cheng Y Z, et al. Innovation and application of geothermal resources exploration technology in the mid-deep layers of the Yangtze River Delta[J]. Science & Technology Review, 2023, 41(12): 46-65.
[7] 张昭, 殷全增, 张龙飞, 等. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[7] Zhang Z, Yin Q Z, Zhang L F, et al. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiongan new area[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 926-935.
[8] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究: 来自地球物理的证据[J]. 中国地质, 2021, 48(5): 1453-1468.
[8] Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiongan new area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453-1468.
[9] 王亚辉, 张茂省, 师云超, 等. 基于综合物探的城市地下空间探测与建模[J]. 西北地质, 2019, 52(2): 83-94.
[9] Wang Y H, Zhang M S, Shi Y C, et al. Precise detection and modeling of urban underground space based on integrated geophysical exploration[J]. Northwestern Geology, 2019, 52(2): 83-94.
[10] 田宝卿, 丁志峰. 微动探测方法研究进展与展望[J]. 地球物理学进展, 2021, 36(3): 1306-1316.
[10] Tian B Q, Ding Z F. Review and prospect prediction for microtremor survey method[J]. Progress in Geophysics, 2021, 36(3): 1306-1316.
[11] 张文文, 张永谦, 黄跃鹏, 等. 地震背景噪声成像技术研究进展与展望[J]. 地球物理学进展, 2022, 37(1): 125-141.
[11] Zhang W W, Zhang Y Q, Huang Y P, et al. Research progress and prospect of seismic ambient noise tomography[J]. Progress in Geophysics, 2022, 37(1): 125-141.
[12] 应恒成, 李洪强, 张玉敏, 等. 基于SPAC法探测松科二井深层地热储水构造[J]. 地球学报, 2022, 43(6): 909-916.
[12] Ying H C, Li H Q, Zhang Y M, et al. Application of SPAC method to survey deep geothermal water storage structures in SK-2[J]. Acta Geoscientica Sinica, 2022, 43(6): 909-916.
[13] Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2012, 188(1): 115-122.
[14] Tian B Q, Xu P F, Ling S Q, et al. Application effectiveness of the microtremor survey method in the exploration of geothermal resources[J]. Journal of Geophysics and Engineering, 2017, 14(5): 1283-1289.
[15] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[15] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1345-1351.
[16] 陈昌昕, 严加永, 周文月, 等. 地热地球物理勘探现状与展望[J]. 地球物理学进展, 2020, 35(4): 1223-1231.
[16] Chen C X, Yan J Y, Zhou W Y, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4): 1223-1231.
[17] Okada H, Suto K. The microtremor survey method[M].Society of Exploration Geophysicists, 2003.
[18] 李广才, 李培, 姜春香, 等. 我国城市地球物理勘探方法应用进展[J]. 地球物理学进展, 2023, 38(4): 1799-1814.
[18] Li G C, Li P, Jiang C X, et al. Advances of the application of urban geophysical exploration methods in China[J]. Progress in Geophysics, 2023, 38(4): 1799-1814.
[19] 邢作云, 赵斌, 涂美义, 等. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 2005, 12(2): 247-262.
[19] Xing Z Y, Zhao B, Tu M Y, et al. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 2005, 12(2): 247-262.
[20] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
[21] Chen G D. On the geotectonic nature of the Fen-Wei rift system[J]. Tectonophysics, 1987, 143(1-3): 217-223.
[22] 王同和. 晋陕地区地质构造演化与油气聚集[J]. 华北地质矿产杂志, 1995(3): 283-398.
[22] Wang T H. Evolutionary characteristics of geological structure and oil-gas accumulation in Shanxi-Shaanxi area[J]. North China Journal of Geology and Mineral Resources, 1995(3): 283-398.
[23] 齐玥, 罗金海, 巫嘉德, 等. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 2016, 32(7): 2015-2028.
[23] Qi Y, Luo J H, Wu J D, et al. Geochemical and Sr-Nd-Pb isoto-pic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 2016, 32(7): 2015-2028.
[24] 闫纪元. 运城盆地及北侧孤山晚新生代构造—沉积与隆升—剥蚀过程研究[D]. 北京: 中国地质科学院, 2021.
[24] Yan J Y. Study on late Cenozoic tectonic-sedimentary and uplift-erosion processes in Yuncheng Basin and Gushan on its north side[D]. Beijing: Chinese Academy of Geological Sciences, 2021.
[25] 孙建英. 运城盆地及邻区重磁力异常成因研究[D]. 西安: 西安石油大学, 2016.
[25] Sun J Y. Study on the causes of gravity and magnetic anomalies in Yuncheng basin and its adjacent areas[D]. Xi’an: Xi’an Shiyou University, 2016.
[26] 赵俊峰, 盛双占, 王栋, 等. 临汾—运城盆地上古生界演化、改造及油气资源潜力分析[J]. 地质论评, 2019, 65(1): 168-180.
[26] Zhao J F, Sheng S Z, Wang D, et al. Analysis on evolution, modification and hydrocarbon resources potential of the upper Paleozoic in the Linfen—Yuncheng Basin[J]. Geological Review, 2019, 65(1): 168-180.
[27] 徐继山, 庄会栋, 唐东旗, 等. 运城盆地地裂缝特征及机理分析[J]. 地质灾害与环境保护, 2010, 21(2): 97-100.
[27] Xu J S, Zhuang H D, Tang D Q, et al. Characteristic and mechanism analysis of ground fissures in Yuncheng basin[J]. Journal of Geological Hazards and Environment Preservation, 2010, 21(2): 97-100.
[28] 赵俊彦, 王海刚, 卢全中, 等. 运城盆地和峨眉台地地裂缝基本特征[J]. 中国地质灾害与防治学报, 2018, 29(6): 58-67.
[28] Zhao J Y, Wang H G, Lu Q Z, et al. Basic features of ground fissures in Yuncheng Basin and Emei Platform[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 58-67.
[29] 李壮, 冯志强, 侯建斌, 等. 山西省地热资源规律及其地质背景研究[J]. 地质与勘探, 2023, 59(2): 353-376.
[29] Li Z, Feng Z Q, Hou J B, et al. The law of geothermal resources in Shanxi Province and its geological background[J]. Geology and Exploration, 2023, 59(2): 353-376.
[30] 司庆红, 曾威, 刘行, 等. 临汾—运城盆地氦气富集要素及成藏条件[J]. 西北地质, 2023, 56(1): 129-141.
[30] Si Q H, Zeng W, Liu X, et al. Analysis of helium enrichment factors and reservoir forming conditions in Linfen-Yuncheng Basin[J]. Northwestern Geology, 2023, 56(1): 129-141.
[31] 李强. 运城市地热水水化学特征及评价研究[J]. 水利与建筑工程学报, 2015, 13(5): 127-130, 184.
[31] Li Q. Hydrochemistry and evaluation of geothermal water in Yuncheng[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(5): 127-130, 184.
[32] 李成城. 运城盆地高氟地下咸水成因机制研究[D]. 武汉: 中国地质大学, 2018.
[32] Li C C. Study on genetic mechanism of high fluorine groundwater in Yuncheng basin[D]. Wuhan: China University of Geosciences, 2018.
[33] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35:415-456.
[34] Ling S Q. Research on the estimation of phase velocities of surface waves in microtremors[D]. Sapporo: Hokkaido University,1994.
[35] 郭春杉. 运城盆地主要断裂活动性及其相关块体变形特征研究[D]. 北京: 中国地震局地震预测研究所, 2019.
[35] Guo C S. Study on main fault activity and deformation characteristics of related blocks in Yuncheng basin[D]. Beijing: Institute of Earthquake Prediction, China Earthquake Administration, 2019.
[36] 金刚. 山西运城盆地新生代沉积—构造演化研究[D]. 西安: 长安大学, 2020.
[36] Jin G. Study on Cenozoic sedimentary-tectonic evolution in Yuncheng basin, Shanxi Province[D]. Xi’an: Changan University, 2020.
[37] 易锦俊. 山西地堑系活动断裂与地震、地裂缝灾害研究[D]. 西安: 长安大学, 2008.
[37] Yi J J. Study on active faults and earthquake and ground fissure disasters in Shanxi graben system[D]. Xi’an: Changan University, 2008.
[38] 刘义. 山前断裂上盘地裂缝群发机制研究——以运城盆地夏县地裂缝为例[D]. 西安: 长安大学, 2014.
[38] Liu Y. Study on the mechanism of ground fissures in footwall of piedmont fault:A case study of ground fissures in Xiaxian County, Yuncheng Basin[D]. Xi’an: Changan University, 2014.
[1] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[2] 刘宏凯, 高磊, 张杰, 侯贺晟, 谢民英, 李洪强. 反射地震剖面揭示容城凸起基岩面和断裂结构及其对地热成因的启示[J]. 物探与化探, 2024, 48(4): 934-944.
[3] 齐娟娟. 基于微动的千米深度勘探关键影响因素[J]. 物探与化探, 2024, 48(3): 777-785.
[4] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[5] 张保卫, 岳航羽, 谢伟, 房苏, 徐昊, 王凯. 反射地震在冀中坳陷保定凹陷精细地质结构探测中的应用[J]. 物探与化探, 2022, 46(6): 1359-1368.
[6] 王通, 刘建勋, 王兴宇, 李广才, 田密. Shearlet域尺度角度自适应深反射地震数据随机噪声压制方法[J]. 物探与化探, 2022, 46(3): 704-713.
[7] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[8] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[9] 高景华, 刘建勋, 张保卫, 王小江, 徐明才. 高精度地震探测陆域天然气水合物的有效性研究[J]. 物探与化探, 2017, 41(6): 1005-1011.
[10] 徐建宇, 姜春香, 张保卫, 岳航羽. 浅层地震技术在陆域天然气水合物勘探中存在的问题及对策[J]. 物探与化探, 2017, 41(6): 1127-1132.
[11] 徐建宇, 姜春香, 岳航羽, 王凯. 浅层地震在永冻区探测冻土层厚度的试验研究[J]. 物探与化探, 2017, 41(6): 1121-1126.
[12] 李培, 姜春香, 荣立新, 王小江, 李金丽. 戈木错地区天然气水合物高分辨率反射地震探测技术试验[J]. 物探与化探, 2017, 41(6): 1228-1236.
[13] 徐明才, 刘建勋, 李培, 张凯, 王凯, 王小江, 张保卫, 王广科, 柴铭涛, 高景华. 羌塘盆地戈木错地区天然气水合物地震探测[J]. 物探与化探, 2017, 41(6): 1220-1227.
[14] 徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016, 40(6): 1103-1107.
[15] 徐明才, 哈立洋, 王小江, 柴铭涛, 刘建勋, 王广科, 张保卫, 李培, 王凯, 高景华. 哈拉湖地区天然气水合物地震探测技术试验[J]. 物探与化探, 2016, 40(4): 667-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com