Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 158-165    DOI: 10.11720/wtyht.2025.1245
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于二次编解码网络的适应性叠前反演方法
单博1,2(), 邢宇鑫1,2(), 张繁昌3, 李志伟1,2, 陈默1,2
1.中国地质调查局 油气资源调查中心,北京 100083
2.中国地质调查局非常规油气重点实验室, 北京 100083
3.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Adaptive prestack inversion method based on quadratic encoder-decoder network
SHAN Bo1,2(), XING Yu-Xin1,2(), ZHANG Fan-Chang3, LI Zhi-Wei1,2, CHEN Mo1,2
1. Oil & Gas Resources Survey, China Geological Survey, Beijing 100083, China
2. Key Laboratory of Unconventional Oil and Gas, China Geological Survey, Beijing 100083, China
3. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(3712 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

AVO反演以Zoeppritz方程为基础,可从叠前地震资料中提取多种隐藏的岩石物性参数。在地震资料中,角度数据是以偏移距形式记录的范围值,两者相互转换容易产生计算误差;在不同工区使用同一套近似式,适用性会受到实际地质条件影响;而精确Zoeppritz方程较复杂,会产生更大的计算量。为此,构建一种基于二次编解码网络的适应性叠前反演方法,利用深度学习极强的特征关系提取能力代替传统关系式,来弥补角度误差,适应不同工区、不同地质条件的差异。该网络以二次型算法为优化算法,改进了常规编码—解码(Encoder-Decoder)结构,达到效率最大化;同时结合Xavier方法让模型初始化更具随机性,提高网络抗干扰能力。结果表明,通过正交试验优选后的二次编解码网络比单解码网络预测效果更好,与实际测井曲线吻合程度更高,反演所得的纵、横波速度和密度成果剖面均符合研究区地质情况,横向连续性强,能够实现高效、高稳定的叠前反演任务。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单博
邢宇鑫
张繁昌
李志伟
陈默
关键词 叠前反演深度学习编码—解码模型二次型算法正交试验法    
Abstract

AVO inversion, based on the Zoeppritz equation, extracts various hidden petrophysical parameters from pre-stack seismic data. In seismic data, angle information is recorded in the form of offset values, and converting between offset values and angles is prone to generate errors. In addition, using the same approximate formula for different acreage types may lead to reduced applicability due to varying actual geological conditions. The exact Zoeppritz equation will lead to increased computational demands due to its high complexity. Therefore, this study developed an adaptive prestack inversion method based on the quadratic Encoder-Decoder network. This inversion method used the high feature and relationship extraction abilities of deep learning to replace traditional relationships, thereby reducing the angle errors and adapting to varying acreage types and geological conditions. The quadratic Encoder-Decoder network used a quadratic algorithm as the optimization method, maximizing the efficiency of the standard Encoder-Decoder structure. Additionally, the Xavier initialization method was incorporated to enhance the randomness of model initialization, thus improving the robustness of the network. The results indicate that the quadratic Encoder-Decoder network, selected through orthogonal experiments, outperforms the single-decoder network in prediction and exhibits greater consistency with actual log curves. The P-wave velocity, S-wave velocity, and density profiles obtained from inversion are consistent with the geological conditions of the study area, exhibit strong lateral continuity, and can effectively achieve high-precision prestack inversion.

Key wordsprestack inversion    deep learning    encoder-decoder    quadratic algorithm    orthogonal experiment
收稿日期: 2024-05-29      修回日期: 2024-09-05      出版日期: 2025-02-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41874146);中国地质调查局地质调查项目(DD20230713);中国地质调查局地质调查项目(DD20242673)
通讯作者: 邢宇鑫(1991-),男,工程师,主要从事物探与地理信息技术研究工作。Email:xingyuxin@mail.cgs.gov.cn
作者简介: 单博(1998-),男,助理工程师,主要从事智能地球物理正反演方法研究工作。Email:shanbo@mail.cgs.gov.cn
引用本文:   
单博, 邢宇鑫, 张繁昌, 李志伟, 陈默. 基于二次编解码网络的适应性叠前反演方法[J]. 物探与化探, 2025, 49(1): 158-165.
SHAN Bo, XING Yu-Xin, ZHANG Fan-Chang, LI Zhi-Wei, CHEN Mo. Adaptive prestack inversion method based on quadratic encoder-decoder network. Geophysical and Geochemical Exploration, 2025, 49(1): 158-165.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1245      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/158
Fig.1  二次编解码网络叠前反演训练及预测流程
Fig.2  二次编解码网络结构
Fig.3  二次编解码网络训练流程
网络类型 单层时间复杂度
全连接神经网 O(M×N)
LSTM O(T×h2)
CNN O(L2×K2×Cin×Cout)
Self-Attention O(T2×d)
Table 1  不同神经网络时间复杂度
Fig.4  部分角度叠加地震剖面
因子 水平
1 2 3 4
A)Encoder参数量 0.2 0.3 0.4 0.6
B)Decoder层数 1 2 3 4
C)Decoder维度 64 128 256 512
D)优化算法 Adam 二次型
E)Xavier初始化
Table 2  二次编解码网络反演因子水平
因子
A B C D E
较优水平 A3 B2 C3 D2 E1
因子主次 4 3 1 2 5
Table 3  二次编解码网络反演试验结果分析
Fig.5  过Te1井二次编解码网络与循环神经网络预测剖面及Te1井预测曲线
方法 相对误差/% 相关系数 训练时长/s
二次编解码网络 4.12 0.932 5.17
单解码循环神经网络 9.28 0.845 4.86
Table 4  不同网络模型的反演精度与效率
Fig.6  过Te2井原始地震剖面
Fig.7  过Te2井二次编解码网络与常规叠前同时反演结果对比
方法 纵波速度
/(m·s-1)
横波速度
/(m·s-1)
密度
/(kg·m-3)
二次编解码网络 0.872 0.870 0.863
常规同时反演方法 0.883 0.879 0.871
Table 5  不同方法反演结果的相关系数
[1] Zoeppritz K. On the reflection and propagation of seismic waves at discontinuities[J]. Erdbebenwellen VII B,1919:66-84.
[2] Bortfeld R. Approximations to the reflection and transmission coefficients of plane longitudinal and transverse WAVES[J]. Geophysical Prospecting, 1961, 9(4):485-502.
[3] Aki K, Richards P G. Quantitative seismology:Theory and methods[M]. San Francisco: Freeman W H,1980:133-154.
[4] Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609.
[5] Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the geostack technique[J]. Geophysics, 1994, 59(9):1362-1376.
[6] Goodway B, Chen T W, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; “λρ”,“μρ”,&“λ/μ fluid stack”,from P and S inversions[C]// SEG Technical Program Expanded Abstracts 1997.Society of Exploration Geophysicists,1997:148-151.
[7] Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9):993-1014.
[8] 宗兆云, 印兴耀, 张峰, 等. 杨氏模量和泊松比反射系数近似方程及叠前地震反演[J]. 地球物理学报, 2012, 55(11):3786-3794.
[8] Zong Z Y, Yin X Y, Zhang F, et al. Reflection coefficient equation and pre-stack seismic inversion with Young’s modulus and Poisson ratio[J]. Chinese Journal of Geophysics, 2012, 55(11):3786-3794.
[9] 宋晓雨. 准噶尔盆地三叠系致密砂岩甜点地震预测[D]. 东营: 中国石油大学(华东), 2020.
[9] Song X Y. Earthquake prediction of Triassic tight sandstone dessert in Junggar basin[D]. Dongying: China University of Petroleum (Huadong), 2020.
[10] Zhang F C, Yang J Y, Li C H, et al. Direct inversion for reservoir parameters from prestack seismic data[J]. Journal of Geophysics and Engineering, 2020, 17(6):993-1004.
[11] 宋宝山. 多波AVO叠前反演及应用研究[D]. 北京: 中国石油大学(北京), 2021.
[11] Song B S. Multi-wave AVO prestack inversion and its application[D]. Beijing: China University of Petroleum (Beijing), 2021.
[12] Zhou L, Liu X Y, Li J Y, et al. Robust AVO inversion for the fluid factor and shear modulus[J]. Geophysics, 2021, 86(4):R471-R483.
[13] 范晓辉, 杨景阳, 单博. 剪切模量和密度反射系数近似方程及叠前地震反演[J]. 石油物探, 2022, 61(5):830-841.
doi: 10.3969/j.issn.1000-1441.2022.05.008
[13] Fan X H, Yang J Y, Shan B. Approximate equations of shear modulus and density reflection coefficient and prestack seismic inversion[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):830-841.
[14] Zhu X F, McMechan G. AVO inversion using the Zoeppritz equation for PP reflections[C]// SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists,2012:1-5.
[15] 黄捍东, 王彦超, 郭飞, 等. 基于佐普里兹方程的高精度叠前反演方法[J]. 石油地球物理勘探, 2013, 48(5):740-749,672,854.
[15] Huang H D, Wang Y C, Guo F, et al. High precision prestack inversion algorithm based on Zoeppritz equations[J]. Oil Geophysical Prospecting, 2013, 48(5):740-749,672,854.
[16] Zhi L X, Chen S Q, Li X Y, et al. An improved strategy for exact Zoeppritz equations AVA inversion[C]// SEG Technical Program Expanded Abstracts 2015.New Orleans,Louisiana. Society of Exploration Geophysicists,2015:654-658.
[17] 王振涛, 慎国强, 王玉梅, 等. 模型驱动的高精度叠前地震反演方法及应用[J]. 石油物探, 2020, 59(6):927-935.
doi: 10.3969/j.issn.1000-1441.2020.06.011
[17] Wang Z T, Shen G Q, Wang Y M, et al. Model driven high-precision prestack seismic inversion[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):927-935.
doi: 10.3969/j.issn.1000-1441.2020.06.011
[18] 王昊, 严加永, 付光明, 等. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展, 2020, 35(2):642-655.
[18] Wang H, Yan J Y, Fu G M, et al. Current status and application prospect of deep learning in geophysics[J]. Progress in Geophysics, 2020, 35(2):642-655.
[19] Yu S W, Ma J W. Deep learning for geophysics:Current and future trends[J]. Reviews of Geophysics, 2021, 59(3):e2021RG000742.
[20] 张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2):260-270.
[20] Zhang L F, Wang J Y, Zhang M S, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2):260-270.
[21] 邱芹军, 马凯, 朱恒华, 等. 基于BERT的三维地质建模约束信息抽取方法及意义[J]. 西北地质, 2022, 55(4):124-132.
[21] Qiu Q J, Ma K, Zhu H H, et al. BERT-based method and significance of constraint information extraction for 3D geological modelling[J]. Northwestern Geology, 2022, 55(4):124-132.
[22] 杨柳青, 王守东, 李婧铭. 多任务Transformer下的小样本叠前AVO反演方法研究[J/OL]. 地球物理学进展, 2024[2024-06-11]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1523.062.html.
[22] Yng L Q, Wang S D, Li J M. Few-shot pre-stack AVO inversion using a multi-task Transformer[J/OL]. Progress in Geophysics, 2024[2024-06-11]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1523.062.html.
[23] Biswas R, Sen M K, Das V, et al. Prestack and poststack inversion using a physics-guided convolutional neural network[J]. Interpretation, 2019, 7(3):SE161-SE174.
[24] 孙宇航, 刘洋, 陈天胜. 基于无监督深度学习的多波AVO反演及储层流体识别[J]. 石油物探, 2021, 60(3):385-394,413.
doi: 10.3969/j.issn.1000-1441.2021.03.004
[24] Sun Y H, Liu Y, Chen T S. Multi-wave amplitude-versus-offset inversion and reservoir fluid identification based on unsupervised deep learning[J]. Geophysical Prospecting for Petroleum, 2021, 60(3):385-394,413.
doi: 10.3969/j.issn.1000-1441.2021.03.004
[25] Sun Y H, Liu Y, Zhang M, et al. Inversion of low-to medium-frequency velocities and densities from AVO data using invertible neural networks[J]. Geophysics, 2022, 87(3):A37-A42.
[26] 单博, 张繁昌, 丁继才. 利用二次型寻优网络预测砂泥岩地层横波速度[J]. 石油地球物理勘探, 2022, 57(1):26-33,4-5.
[26] Shan B, Zhang F C, Ding J C. S-wave velocity prediction method for sand-shale formation based on quadratic optimization network[J]. Oil Geophysical Prospecting, 2022, 57(1):26-33,4-5.
[27] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,2010:249-256.
[28] 常兆光, 王清河, 杜彩凤. 应用统计方法[M]. 北京: 石油工业出版社, 2009.
[28] Chang Z G, Wang Q H, Du C F. Applied statistical method[M]. Beijing: Petroleum Industry Press, 2009.
[29] 车万翔, 郭江, 崔一鸣. 自然语言处理:基于预训练模型的方法[M]. 北京: 电子工业出版社, 2021.
[29] Che W X, Guo J, Cui Y M. Natural language processing[M]. Beijing: Publishing House of Electronics Industry, 2021.
[30] 单博, 范晓辉, 张繁昌. 基于深度神经网络的三维速度建模[C]// 2021年中国地球科学联合学术年会论文集,2021:182-183.
[30] Shan B, Fan X H, Zhang F C. 3D velocity modeling based on deep neural network[C]// CGU-2021,2021:182-183.
[1] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[2] 赵丽芳, 喻思羽, 李少华. 基于深度学习的变差函数自动拟合方法研究[J]. 物探与化探, 2024, 48(5): 1359-1367.
[3] 姚禹, 张志厚. 基于改进DenseNet的大地电磁智能反演[J]. 物探与化探, 2024, 48(3): 759-767.
[4] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[5] 牛丽萍, 胡华锋, 周单, 郑晓东, 耿建华. 基于精确Zoeppritz方程的贝叶斯叠前地震随机反演[J]. 物探与化探, 2024, 48(1): 77-87.
[6] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[7] 商伟, 张云银, 孔省吾, 刘峰. 基于叠前多参数敏感因子融合的浊积岩储层识别技术[J]. 物探与化探, 2022, 46(4): 904-913.
[8] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[9] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[10] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[11] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[12] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[13] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[14] 邓炜, 梁金强, 钟桐, 何玉林, 孟苗苗. 基于水合物指示因子的地震识别方法[J]. 物探与化探, 2021, 45(1): 57-67.
[15] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com