Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 77-87    DOI: 10.11720/wtyht.2024.2572
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于精确Zoeppritz方程的贝叶斯叠前地震随机反演
牛丽萍1(), 胡华锋1, 周单1, 郑晓东2, 耿建华3,4,5
1.中石化石油物探技术研究院有限公司,江苏 南京 211103
2.中国石油勘探开发研究院,北京 100083
3.同济大学海洋地质国家重点实验室,上海 200092
4.同济大学 海洋与地球科学学院,上海 200092
5.同济大学 海洋资源研究中心,上海 200092
Bayesian prestack seismic stochastic inversion based on the exact Zoeppritz equation
NIU Li-Ping1(), HU Hua-Feng1, ZHOU Dan1, ZHENG Xiao-Dong2, GENG Jian-Hua3,4,5
1. SINOPEC Geophysical Research Institute Co.,Ltd.,Nanjing 211103,China
2. Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
3. State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
4. School of Ocean and Earth Science,Tongji University,Shanghai 200092,China
5. Research Center for Marine Resources,Tongji University,Shanghai 200092,China
全文: PDF(8080 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于精确Zoeppritz方程的叠前地震反演方法在面向低信噪比地震资料的应用时仍然存在较大挑战。马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)模拟是一种启发式的全局寻优算法,是实现叠前弹性参数非线性反演的有效途径。常规基于MCMC算法的叠前反演采用高斯分布来刻画弹性参数的统计特征,在应用于复杂岩性储层时有较大的局限性。同时,由于地下模型参数空间巨大以及地震数据中噪声等因素的影响,MCMC对弹性参数后验概率分布的搜索过程极易受到局部极值的影响,这使得基于MCMC的叠前反演较难获得稳定、准确的结果。本文针对实际复杂储层及低信噪比地震资料条件下基于精确Zoeppritz方程的叠前反演问题,提出了一种改进的MCMC弹性参数反演方法。该方法首先利用低频模型约束,将待反演参数转换为模型参数的扰动量,从而降低后验概率分布的复杂度;其次,通过对似然函数取对数,并利用低频模型来约束地震正演过程;最后,利用基于随机子空间采样的多链算法对叠前非线性反演问题进行全局寻优,以避免采样过程过早地收敛到局部极值。低信噪比模拟数据和实际数据的测试表明,本文所提方法能够获得更加准确、稳定的弹性参数反演结果,并且能够对反演结果给出可信、定量的不确定性估计。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛丽萍
胡华锋
周单
郑晓东
耿建华
关键词 Zoeppritz方程贝叶斯理论叠前反演MCMC不确定性    
Abstract

The prestack seismic inversion method based on the exact Zoeppritz equation is challenged by seismic data with low signal-to-noise ratios(SNRs).The Markov chain Monte Carlo(MCMC) simulation is a heuristic global optimization algorithm that can achieve effective prestack nonlinear inversion of elastic parameters.The conventional MCMC-based prestack inversion method,which characterizes the statistical properties of elastic parameters via the Gaussian distribution,has significant limitations when applied to complex lithologic reservoirs.Besides,due to the influence of the huge parameter space of subsurface models and the noise in seismic data,the MCMC search process for the posterior probability distribution of elastic parameters is very sensitive to local extrema,making it difficult to obtain stable and accurate results from MCMC-based prestack inversion.This study proposed an improved MCMC-based elastic parameter inversion method to address the challenges faced by the prestack inversion based on the exact Zoeppritz equation under the conditions of actual complex reservoirs and seismic data with low SNRs.First,the method reduced the complexity of the posterior probability distribution by transforming the parameters to be inverted into the perturbations of the model parameters using a low-frequency model (LFM) constraint.Then,the seismic forward modeling process was constrained by taking the logarithm of the likelihood function and utilizing an LFM.Finally,a multi-chain algorithm based on random subspace sampling was employed to perform global optimization for the prestack nonlinear inversion problems,thus avoiding premature convergence of the sampling process to local extrema.As indicated by the tests on the simulated data with low SNRs and the actual data,the method proposed in this study can yield more accurate and stable inversion results while providing credible and quantitative uncertainty estimates for the inversion results.

Key wordsZoeppritz equation    Bayesian theory    prestack inversion    MCMC    uncertainty
收稿日期: 2022-11-25      修回日期: 2023-10-19      出版日期: 2024-02-20
ZTFLH:  P631.4  
基金资助:中国科学院战略性先导科技专项(A类)“深层油气储层地球物理分布预测”(XDA14010203);国家自然科学基金企业创新发展联合基金“海相深层油气富集机理与关键工程技术基础研究”(U19B6003)
作者简介: 牛丽萍(1993-),工程师,博士,2021年毕业于同济大学地球物理学专业,从事储层预测与描述方法的研究工作。Email:niulp.swty@sinopec.com
引用本文:   
牛丽萍, 胡华锋, 周单, 郑晓东, 耿建华. 基于精确Zoeppritz方程的贝叶斯叠前地震随机反演[J]. 物探与化探, 2024, 48(1): 77-87.
NIU Li-Ping, HU Hua-Feng, ZHOU Dan, ZHENG Xiao-Dong, GENG Jian-Hua. Bayesian prestack seismic stochastic inversion based on the exact Zoeppritz equation. Geophysical and Geochemical Exploration, 2024, 48(1): 77-87.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2572      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/77
Fig.1  对弹性参数扰动量的随机采样流程
Fig.2  弹性参数的测井曲线及其低频模型
Fig.3  弹性参数的交会及利用高斯混合分布拟合得到的概率密度等值线
Fig.4  弹性参数扰动量的交会及利用高斯分布拟合得到的概率密度等值线
Fig.5  模拟地震角道集
a—无噪声;b—信噪比为3
Fig.6  含噪声地震数据的弹性参数反演结果
Fig.7  收敛性指标 R ^随迭代次数的变化
Fig.8  时间为1 630 ms处弹性参数扰动量的后验统计直方图
Fig.9  时间为1 672 ms处弹性参数扰动量的后验统计直方图
Fig.10  叠加地震剖面
Fig.11  不同CDP位置处的实际地震角道集
Fig.12  低频模型
a—纵波速度;b—横波速度;c—密度
Fig.13  测井位置处弹性参数扰动量的交会及其高斯分布拟合结果
Fig.14  弹性参数的反演剖面
a—纵波速度;b—横波速度;c—密度
Fig.15  W1井的反演结果
a—纵波速度;b—横波速度;c—密度;d—井旁地震角道集
Fig.16  W2井的反演结果
a—纵波速度;b—横波速度;c—密度;d—井旁地震角道集
Fig.17  弹性参数的后验标准差
a—纵波速度; b—横波速度; c—密度
Fig.18  不同CDP位置处收敛性指标 R ^随迭代次数的变化
[1] Zoeppritz K. On the reflection and propagation of seismic waves[J]. Gottinger Nachrichten, 1919, 1(5):66-84.
[2] Aki K, Richards P G. Quantitative seismology:Theory and methods[M]. San Francisco: W H Freeman,1980.
[3] Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609-614.
doi: 10.1190/1.1441936
[4] Wiggins R, Kenny G S, McClure C D. Common-depth method for determining and displaying the shear-velocity reflectivities of a geologic formation[J]. The Journal of the Acoustical Society of America, 1986, 79(2):589-590.
[5] Mallick S. A simple approximation to the P-wave reflection coefficient and its implication in the inversion of amplitude variation with offset data[J]. Geophysics, 1993, 58(4):544-552.
doi: 10.1190/1.1443437
[6] Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994, 59(9):1362-1376.
doi: 10.1190/1.1443695
[7] Goodway B, Chen T W, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”,“μρ”,&“λ/μ fluid stack”,from P and S inversions[C]// SEG Technical Program Expanded Abstracts 1997,Society of Exploration Geophysicists, 1997:183-186.
[8] Gray D, Goodway B, Chen T W. Bridging the gap:Using AVO to detect changes in fundamental elastic constants[C]// SEG Technical Program Expanded Abstracts 1999,Society of Exploration Geophysicists, 1999:852-855.
[9] 程彦, 董守华, 赵伟, 等. Zoeppritz方程近似解拟合精确解影响因素[J]. 物探与化探, 2010, 34(4):523-527.
[9] Cheng Y, Dong S H, Zhao W, et al. The analysis of influencing factors between Zoeppritz approximate solution and exact solution[J]. Geophysical and Geochemical Exploration, 2010, 34(4):523-527.
[10] Innanen K A, Mahmoudian F. Characterizing the degree of amplitude-variation-with-offset nonlinearity in seismic physical modelling reflection data[J]. Geophysical Prospecting, 2015, 63(1):133-140.
doi: 10.1111/gpr.2015.63.issue-1
[11] Vernik L. Seismic petrophysics in quantitative interpretation[M].Society of Exploration Geophysicists, 2016.
[12] 刘福平, 孟宪军, 王玉梅, 等. 反演纵横波速度的Jacobian矩阵及精确计算方法[J]. 中国科学:地球科学, 2010, 11(11):1608-1616.
[12] Liu F P, Meng X J, Wang Y M, et al. Jacobian matrix for inversion of P- wave velocity and its accurate calculation method[J]. Scientia Sinica:Terrae, 2010, 40(11):1608-1616.
doi: 10.1360/zd2010-40-11-1608
[13] Zhi L X, Chen S Q, Li X Y. Joint AVO inversion of PP and PS waves using exact Zoeppritz equation[C]// SEG Technical Program Expanded Abstracts 2013,Society of Exploration Geophysicists,2013.
[14] Zong Z Y, Yin X Y, Wu G C. Multi-parameter nonlinear inversion with exact reflection coefficient equation[J]. Journal of Applied Geophysics, 2013, 98:21-32.
doi: 10.1016/j.jappgeo.2013.07.012
[15] Zhi L X, Chen S Q, Li X Y. Amplitude variation with angle inversion using the exact Zoeppritz equations:Theory and methodology[J]. Geophysics, 2016, 81(2):N1-N15.
doi: 10.1190/geo2014-0582.1
[16] Yin X Y, Cheng G S, Zong Z Y. Non-linear AVO inversion based on a novel exact PP reflection coefficient[J]. Journal of Applied Geophysics, 2018, 159:408-417.
doi: 10.1016/j.jappgeo.2018.09.019
[17] 张凌远, 张宏兵, 尚作萍, 等. 基于Zoeppritz方程的叠前和叠后混合多参数非线性地震反演[J]. 石油地球物理勘探, 2021, 56(1):164-171.
[17] Zhang L Y, Zhang H B, Shang Z P, et al. Nonlinear multi-parameter hybrid inversion of prestack and post-stack seismic data based on Zoeppritz equation[J]. Oil Geophysical Prospecting, 2021, 56(1):164-171,11.
[18] Mallick S, Adhikari S. Amplitude-variation-with-offset and prestack-waveform inversion:A direct comparison using a real data example from the Rock Springs Uplift,Wyoming,USA[J]. Geophysics, 2015, 80(2):B45-B59.
doi: 10.1190/geo2014-0233.1
[19] 冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4):707-714.
[19] Ran R, Song J G. Compressional and shear modulus inversion based on Zoeppritz equation[J]. Geophysical and Geochemical Exploration, 2017, 41(4):707-714.
[20] Gholami A, Aghamiry H S, Abbasi M. Constrained nonlinear amplitude variation with offset inversion using Zoeppritz equations[J]. Geophysics, 2018, 83(3):R245-R255.
doi: 10.1190/geo2017-0543.1
[21] Riedel M, Dosso S E, Beran L. Uncertainty estimation for amplitude variation with offset(AVO) inversion[J]. Geophysics, 2003, 68(5):1485-1496.
doi: 10.1190/1.1620621
[22] White J. Computer model inversion and uncertainty quantification in the geosciences[D]. Tampa: University of South Florida, 2014.
[23] 张广智, 王丹阳, 印兴耀, 等. 基于MCMC的叠前地震反演方法研究[J]. 地球物理学报, 2011, 54(11):2926-2932.
[23] Zhang G Z, Wang D Y, Yin X Y, et al. Study on prestack seismic inversion using Markov chain Monte Carlo[J]. Chinese Journal of Geophysics, 2011, 54(11):2926-2932.
[24] 印兴耀, 孔栓栓, 张繁昌, 等. 基于差分进化算法的叠前AVO反演[J]. 石油地球物理勘探, 2013, 48(4):591-596,676,503.
[24] Yin X Y, Kong S S, Zhang F C, et al. Prestack AVO inversion based on the differential evolution algorithm[J]. Oil Geophysical Prospecting, 2013, 48(4):591-596,676,503.
[25] Grana D, Fjeldstad T, Omre H. Bayesian Gaussian mixture linear inversion for geophysical inverse problems[J]. Mathematical Geosciences, 2017, 49(4):493-515.
doi: 10.1007/s11004-016-9671-9
[26] de Figueiredo L P, Grana D, Roisenberg M, et al. Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion[J]. Geophysics, 2019, 84(3):R463-R476.
doi: 10.1190/GEO2018-0529.1
[27] Aleardi M, Salusti A. Markov chain Monte Carlo algorithms for target-oriented and interval-oriented amplitude versus angle inversions with non-parametric priors and non-linear forward modellings[J]. Geophysical Prospecting, 2020, 68(3):735-760.
doi: 10.1111/1365-2478.12876
[28] Pan X P, Zhang G Z, Zhang J J, et al. Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method[J]. Petroleum Science, 2017, 14(1):75-83.
doi: 10.1007/s12182-016-0131-4
[29] Vrugt J A. Markov chain Monte Carlo simulation using the DREAM software package:Theory,concepts,and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75:273-316.
[30] Tarantola A. Inverse problem theory[M]. Elsevier Science,1987.
[31] Niu L P, Ma J Q, Geng J H, et al. Mixture density network applied to reservoir parameter inversion in Bohai Oil field[C]// New Orleans: SEG Technical Program Expanded Abstracts 2015,Society of Exploration Geophysicists, 2015:2806-2810.
[32] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of State Calculations by Fast Computing Machines[J]. The Journal of Chemical Physics, 1953, 21(6):1087-1092.
doi: 10.1063/1.1699114
[33] Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992, 7(4):457-472.
[1] 商伟, 张云银, 孔省吾, 刘峰. 基于叠前多参数敏感因子融合的浊积岩储层识别技术[J]. 物探与化探, 2022, 46(4): 904-913.
[2] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[3] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[4] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[5] 邓炜, 梁金强, 钟桐, 何玉林, 孟苗苗. 基于水合物指示因子的地震识别方法[J]. 物探与化探, 2021, 45(1): 57-67.
[6] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[7] 包培楠, 王维红, 李文龙, 褚松杰. CRP道集优化处理及其在大庆油田S区的应用[J]. 物探与化探, 2019, 43(5): 1030-1037.
[8] 章雄, 张本健, 梁虹, 徐敏, 张洞君, 曾旖. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018, 42(3): 545-554.
[9] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[10] 冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4): 707-714.
[11] 韩东, 胡向阳, 邬兴威, 刘坤岩, 司朝年, 付鑫, 贾志坤. 基于马蒙算法地质统计学反演的缝洞储集体预测[J]. 物探与化探, 2015, 39(6): 1211-1216.
[12] 李尧. 基线差密度校正法的应用——以蓬莱9-1油田叠前反演处理为例[J]. 物探与化探, 2015, 39(5): 1020-1026.
[13] 蔡克汉, 张盟勃, 高改, 刘峰, 杜广宏, 许磊明. 基于叠前反演的储层预测技术在陕北黄土塬白云岩气藏的应用[J]. 物探与化探, 2014, 38(6): 1164-1171.
[14] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
[15] 张丰麒, 陆占国, 刘昱彤. 联合PP、PS波叠前AVA反演方法[J]. 物探与化探, 2012, 36(6): 985-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com