Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1247-1257    DOI: 10.11720/wtyht.2024.1545
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
四川石棉大渡河地区金矿带基于AMT的地质—地球物理找矿模型
姚文(), 郭军(), 孙崇波, 周洪兵, 张洪超
四川省金属地质调查研究所,四川 成都 611730
AMT-based geological-geophysical prospecting model for the gold ore zone in the Daduhe area, Shimian County, Sichuan Province
YAO Wen(), GUO Jun(), SUN Chong-Bo, ZHOU Hong-Bing, ZHANG Hong-Chao
Sichuan Institute of Metal Geological Survey, Chengdu 611730, China
全文: PDF(8840 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

四川石棉大渡河地区金矿带位于松潘—甘孜造山带南段稀有金属、贵金属和有色多金属成矿带,区内构造复杂,地形陡峻,严重制约找矿勘查的实践运用。本文总结区域成矿地质背景和条件、地球物理特征,以石棉县倮倮坪金矿为典型矿区,开展以音频大地电磁测深(AMT)为核心的地球物理深部勘查工作,圈出3个低电阻率异常体M1、M2和M3,与矿化蚀变带I号、金矿化带Ⅲ号和金铜矿体具有对应性,说明地球物理方法深部找矿具备有效性和适用性。结合地质认识和工程手段验证成果,总结典型矿区地质和地球物理找矿标志,建立适用于地区金矿带的地质—地球物理找矿模型,为地区深部找矿提供技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚文
郭军
孙崇波
周洪兵
张洪超
关键词 石棉金矿带地球物理找矿模型    
Abstract

The gold ore zone in the Daduhe area of Shimian County, Sichuan Province, is located in the rare metal-precious metal-nonferrous polymetal metallogenic belt in the southern segment of the Songpan-Ganzi orogenic belt. It exhibits complex structures and steep terrains, severely restricting prospecting and exploration. Based on the geological settings, conditions, and geophysical characteristics for regional mineralization, this study investigated the typical Luoluoping gold deposit in Shimian by conducting deep geophysical exploration centered on audio-frequency magnetotellurics (AMT). Three low-resistivity anomalies (M1, M2, and M3) were identified, corresponding to the mineralized alteration zone I, the gold mineralization zone III, and the gold-copper ore body, respectively, demonstrating the effectiveness and applicability of geophysical methods for deep prospecting. Combined with geological understanding and engineering verification, this study summarized geological and geophysical prospecting markers for the typical gold deposit, establishing the geological-geophysical prospecting model for the gold ore zone in the study area. Therefore, this study provides technical support for deep prospecting in the study area.

Key wordsShimian    gold ore zone    geophysics    prospecting model
收稿日期: 2023-12-19      修回日期: 2024-03-02      出版日期: 2024-10-20
ZTFLH:  P631  
基金资助:四川省石棉大渡河地区金多金属矿深部找矿关键技术研究项目(SDDY-Z2022017)
通讯作者: 郭军(1988-),男,2012年本科毕业于桂林理工大学,主要从事地球物理矿产勘查工作。Email:327882438@qq.com
作者简介: 姚文(1989-),男,2016年硕士毕业于成都理工大学,主要从事地球物理勘查应用与研究工作。Email:427838589@qq.com
引用本文:   
姚文, 郭军, 孙崇波, 周洪兵, 张洪超. 四川石棉大渡河地区金矿带基于AMT的地质—地球物理找矿模型[J]. 物探与化探, 2024, 48(5): 1247-1257.
YAO Wen, GUO Jun, SUN Chong-Bo, ZHOU Hong-Bing, ZHANG Hong-Chao. AMT-based geological-geophysical prospecting model for the gold ore zone in the Daduhe area, Shimian County, Sichuan Province. Geophysical and Geochemical Exploration, 2024, 48(5): 1247-1257.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1545      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1247
Fig.1  研究区大地构造位置
Fig.2  石棉大渡河地区地质简图
1—花岗岩;2—基性岩;3—辉绿岩;4—第四系;5—矿床(点);6—主剪切带;7—推覆带;8—逆冲带;9—走滑断层;10—糜棱岩带
Fig.3  倮倮坪典型矿区构造纲要
Fig.4  区域物性成果平面
岩性 标本数
量/块
电阻率/ (Ω·m) 电阻
特性
最小值 最大值 算术平均值
白云质灰岩 31 3062.5 340071.9 39320.81 高阻
微晶灰岩 32 3612.16 382537 59746.91 高阻
变质岩屑砂岩 30 2382.35 6745.45 4665.61 中阻
绢云母板岩 31 2021.15 8334.22 5778.55 中阻
辉绿岩 32 769.28 7485.58 3403.02 中阻
金多金属矿矿石 30 85.93 2369.44 1351.4 低阻
炭质板岩 31 0.39 1021.5 53.56 低阻
Table 1  电性参数测定结果统计
Fig.5  矿区地形图及物探测线
Fig.6  各测线电阻率—深度反演剖面
Fig.7  AMT低阻异常体综合立体图
Fig.8  地质—低阻异常体M1立体图
Fig.9  地质—低阻异常体M2立体图
Fig.10  地质—低阻异常体M3立体图
标志类型 找矿标志
地质 构造破碎带 矿区内近SN走向构造破碎带的
主控矿构造
侵入岩 近SN向展布的辉绿岩脉,外接触带是
成矿的有利地带
围岩蚀变 孔雀石化、蓝铜矿化、强褐铁矿化、硅化、
矽卡岩化等
地球物理 电阻率异常 音频大地电磁测深反映的
低电阻率异常
Table 2  典型矿区找矿标志
Fig.11  石棉大渡河地区地质—地球物理找矿模型
[1] 侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带:I.主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358.
[1] Hou Z Q, Yang Z S, Xu W Y, et al. Metallogenesis in Tibetan collisional orogenic belt:Ⅰ.Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 2006, 25(4):337-358.
[2] 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651.
[2] Hou Z Q, Qu X M, Yang Z S, et al. Metallogenesis in Tibetan collisional orogenic belt:Ⅲ.Mineralization in post-collisional extension setting[J]. Mineral Deposits, 2006, 25(6):629-651.
[3] 毛景文, 李晓峰, 李厚民, 等. 中国造山带内生金属矿床类型、特点和成矿过程探讨[J]. 地质学报, 2005, 79(3):342-372.
[3] Mao J W, Li X F, Li H M, et al. Types and characteristics of endogenetic metallic deposits in orogenic belts in China and their metallogenic processes[J]. Acta Geologica Sinica, 2005, 79(3):342-372.
[4] 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2):340-351.
[4] Hou Z Q, Mo X X, Yang Z M, et al. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J]. Geology in China, 2006, 33(2):340-351.
[5] 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2):123-144.
[5] Hou Z Q, Song Y C, Li Z, et al. Thrust-controlled,sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt:Geological features and tectonic model[J]. Mineral Deposits, 2008, 27(2):123-144.
[6] 冯军, 蒋文, 张征. 新疆维权银铜多金属矿地质—地球物理找矿模式及成矿模型[J]. 物探与化探, 2022, 46(4):868-876.
[6] Feng J, Jiang W, Zhang Z. Geophysical prospecting mode and metallogenic model of the Weiquan silver-copper polymetallic deposit in Xinjiang[J]. Geophysical and Geochemical Exploration, 2022, 46(4):868-876.
[7] 陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
[7] Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
[8] 游越新, 邓居智, 陈辉, 等. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3):638-647.
[8] You Y X, Deng J Z, Chen H, et al. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang,Yunnan[J]. Geophysical and Geochemical Exploration, 2023, 47(3):638-647.
[9] 虎新军, 陈晓晶, 仵阳, 等. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4):845-853.
[9] Hu X J, Chen X J, Wu Y, et al. Application of comprehensive geophysical exploration in geothermal resources on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(4):845-853.
[10] 张宝林, 苏艳平, 张国梁, 等. 胶东典型含矿构造岩相带的地质—地球物理信息预测方法与找矿实践[J]. 地学前缘, 2017, 24(2):85-94.
doi: 10.13745/j.esf.yx.2016-12-13
[10] Zhang B L, Su Y P, Zhang G L, et al. Predicting method of typical ore-bearing tectonic lithofacies zones by integrated geological-geophysical information and its prospecting practice in eastern Shandong,China[J]. Earth Science Frontiers, 2017, 24(2):85-94.
[11] 李英康, 高建伟, 韩健, 等. 扬子块体两侧造山带地壳推覆的地球物理证据及其地质意义[J]. 中国科学:地球科学, 2019, 49(4):687-705.
[11] Li Y K, Gao J W, Han J, et al. Geophysical evidence for thrusting of crustal materials from orogenic belts over both sides of the Yangtze Block and its geological significance[J]. Scientia Sinica:Terrae, 2019, 49(4):687-705.
[12] 喻翔, 汪硕, 胡英才, 等. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5):1157-1166.
[12] Yu X, Wang S, Hu Y C, et al. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1157-1166.
[13] 王卫, 陈建国. 湖北荆当盆地何家湾地区三维地质地球物理模型研究[J]. 地质学刊, 2017, 41(3):432-440.
[13] Wang W, Chen J G. 3D geophysical modelling in Hejiawan area of the Jingmen-Dangyang Basin,Hubei Province[J]. Journal of Geology, 2017, 41(3):432-440.
[14] 何帅, 杨炳南, 阮帅, 等. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3):618-627.
[14] He S, Yang B N, Ruan S, et al. Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area,Guizhou using the 3D AMT forward modeling and inversion technologies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):618-627.
[15] 许志琴, 王宗秀, 侯立玮. 松潘—甘孜造山带构造研究新进展[J]. 中国地质, 1991, 18(12):14-16.
[15] Xu Z Q, Wang Z X, Hou L W. New progress in structural research of Songpan-Ganzi orogenic belt[J]. Geology in China, 1991, 18(12):14-16.
[16] 李华健, 王庆飞, 杨林, 等. 青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征[J]. 岩石学报, 2017, 33(7):2189-2201.
[16] Li H J, Wang Q F, Yang L, et al. Orogenic gold deposits formed in Tibetan collisional orogen setting:Geotectonic setting,geological and geochemical features[J]. Acta Petrologica Sinica, 2017, 33(7):2189-2201.
[17] 邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统:三江特提斯例析[J]. 岩石学报, 2016, 32(8):2225-2247.
[17] Deng J, Wang Q F, Li G J. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt,SW China[J]. Acta Petrologica Sinica, 2016, 32(8):2225-2247.
[18] 骆耀南, 俞如龙. 西南三江地区造山演化过程及成矿时空分布[J]. 地球学报, 2002, 23(5):417-422.
[18] Luo Y N, Yu R L. Orogenic evolution and metallogenic time-space distribution in Jinshajiang-Lancangjiang-Nujiang Region,Southwest China[J]. Acta Geosicientia Sinica, 2002, 23(5):417-422.
[19] 滕彦国. 田湾金银铜矿带流体成矿的地球化学界面[D]. 成都: 成都理工学院,1999.
[19] Teng Y G. Geochemical interface of fluid mineralization in tianwan Au-Ag-Cu Belt[D]. Chengdu: Chengdu University of Technology,1999.
[20] 左林. 四川大渡河金矿地质构造特征及深部找矿方向研究[J]. 世界有色金属, 2020(13):74-75.
[20] Zuo L. Study on geological structure characteristics and deep prospecting direction of Daduhe gold mine in Sichuan Province[J]. World Nonferrous Metals, 2020(13):74-75.
[21] 朱玉娣, 代堰锫, 王丽丽, 等. 松潘—甘孜造山带南缘二叠系变质玄武岩的成因与构造意义[J]. 地学前缘, 2017, 24(6):98-109.
doi: 10.13745/j.esf.yx.2016-11-23
[21] Zhu Y D, Dai Y P, Wang L L, et al. Petrogenesis and tectonic significance of the Permian metabasalts in the southern margin of the Songpan-Garze orogenic belt[J]. Earth Science Frontiers, 2017, 24(6):98-109.
[22] 秦大军. 韧性剪切作用与深源流体演化和金矿化的耦合关系[J]. 地质地球化学, 1997, 25(3):58-63.
[22] Qin D J. The coupled relationships between shear zone and deep-derived fluid and mineralization[J]. Geology-Geochemistry, 1997, 25(3):58-63.
[23] 应汉龙, 骆耀南. 四川石棉西部地区金矿床形成时代[J]. 地质论评, 2007, 53(2):273-280.
[23] Ying H L, Luo Y N. The formation age of gold ore deposits in western Shimian,Sichuan[J]. Geological Review, 2007, 53(2):273-280.
[24] 刘斌, 王权锋. 四川石棉县薛家崖金矿成矿地质特征及找矿前景分析[J]. 有色金属工程, 2015, 5(1):76-80.
[24] Liu B, Wang Q F. Gold metallogenic geological characteristics and prospect analysis for xuejiaya gold deposit in Shimian of Sichuan[J]. Nonferrous Metals Engineering, 2015, 5(1):76-80.
[25] 马天祺, 张燕, 陈翠华, 等. 四川丹巴独狼沟金矿中金与碲铋矿物的赋存状态及金的富集机制[J]. 岩石矿物学杂志, 2023, 42(4):541-554.
[25] Ma T Q, Zhang Y, Chen C H, et al. The occurrence state of gold and tellurium? bismuth minerals and enrichment mechanism of gold in Dulanggou gold deposit of Danba,Sichuan Province[J]. Acta Petrologica et Mineralogica, 2023, 42(4):541-554.
[26] 凡韬. 四川省丹巴县美河金矿构造期次及找矿方向探讨[J]. 四川有色金属, 2020(1):18-21,42.
[26] Fan T. Discussion on tectonic stage and prospecting direction of meihe gold deposit,Danba County,Sichuan Province[J]. Sichuan Nonferrous Metals, 2020(1):18-21,42.
[27] 高玲举, 张健, 董淼. 川西高原重磁异常特征与构造背景分析[J]. 地球物理学报, 2015, 58(8):2996-3008.
doi: 10.6038/cjg20150831
[27] Gao L J, Zhang J, Dong M. The study of gravity-magnetic anomaly and tectonic background in Sichuan west region[J]. Chinese Journal of Geophysics, 2015, 58(8):2996-3008.
[28] 闫亚芬, 滕吉文, 阮小敏, 等. 龙门山和相邻地域航磁场特征与汶川大地震[J]. 地球物理学报, 2016, 59(1):197-214.
doi: 10.6038/cjg20160117
[28] Yan Y F, Teng J W, Ruan X M, et al. Aeromagnetic field characteristics and the Wenchuan earthquakes in the Longmenshan mountains and adjacent areas[J]. Chinese Journal of Geophysics, 2016, 59(1):197-214.
[29] 赵航. 川西高原及四川盆地壳幔电性结构研究[D]. 北京: 中国地质大学(北京), 2019.
[29] Zhao H. Study on electrical structure of crust and mantle in western Sichuan Plateau and Sichuan Basin[D]. Beijing: China University of Geosciences(Beijing), 2019.
[30] 李连海. 川西鲜水河断裂带道孚—康定段深部电性结构研究[D]. 昆明: 昆明理工大学, 2021.
[30] Li L H. Study on deep electrical structure of Daofu-Kangding section of Xianshuihe fault zone in western Sichuan[D]. Kunming: Kunming University of Science and Technology, 2021.
[31] 王桥, 杨剑, 夏时斌, 等. 四川盆地新区新层系页岩气的音频大地电磁探测——以川西南乐山地区须家河组为例[J]. 地质学报, 2022, 96(2):699-711.
[31] Wang Q, Yang J, Xia S B, et al. Audio magnetotelluric detection of shale gas in the new horizon of the new area of Sichuan basin:A case study of the Xujiahe Formation in the Leshan area,southwest Sichuan[J]. Acta Geologica Sinica, 2022, 96(2):699-711.
[32] 吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5):1180-1186.
[32] Wu X L, Li M. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1180-1186.
[33] 徐璐平, 朱卫平, 朱宏伟, 等. 南秦岭安康汉中地区岩石物性特征及应用[J]. 物探与化探, 2022, 46(5):1167-1179.
[33] Xu L P, Zhu W P, Zhu H W, et al. Physical property characteristics of rocks in Hanzhong and Ankang areas at the southern foot of Qinling Mountains and their application[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1167-1179.
[34] 吴林楠, 陈寿波, 刘洋, 等. 东天山香山铜镍矿“三位一体” 地质—地球物理模型及深部预测[J]. 新疆地质, 2021, 39(4):534-540.
[34] Wu L N, Chen S B, Liu Y, et al. “Trinity” geological-geophysical model and deep prediction of Xiangshan copper nickel deposit in Eastern Tianshan[J]. Xinjiang Geology, 2021, 39(4):534-540.
[35] 王玉方, 罗霄. 新疆哈密市雅北铁矿地球物理特征及成因分析[J]. 世界有色金属, 2021(10):161-162.
[35] Wang Y F, Luo X. Geophysical characteristics and genetic analysis of Yabei iron deposit in Hami,Xinjiang[J]. World Nonferrous Metals, 2021(10):161-162.
[36] 李凯春, 杨言辰, 陈天文, 等. 吉林小红石砬子铅锌银矿区综合物探三维建模及矿体定位预测[J]. 世界地质, 2022, 41(4):737-750.
[36] Li K C, Yang Y C, Chen T W, et al. 3D modeling of integrated geophysical prospecting and orebody location prediction in Xiaohongshilazi Pb-Zn-Ag mining area,Jilin Province[J]. World Geology, 2022, 41(4):737-750.
[37] 余长恒, 郑健, 张旭林, 等. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1):99-109.
[37] Yu C H, Zheng J, Zhang X L, et al. Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(1):99-109.
[38] 孟玉明. 内蒙古自治区太仆寺旗金豆子山铅锌矿地质地球物理找矿研究[D]. 长沙: 中南大学, 2009.
[38] Meng Y M. Geological and geophysical prospecting of jindouzishan lead-zinc mine in taibus banner,Inner Mongolia autonomous region[D]. Changsha: Central South University, 2009.
[1] 张文斌, 周贤君, 侯翠霞, 王宁祖, 孙平原, 赵振琯, 何碧. 甘肃北山老君庙北金矿土壤地球化学特征及找矿前景[J]. 物探与化探, 2024, 48(4): 945-953.
[2] 周绍钰, 包乾宗, 石卫. 分布式光纤声学传感系统在地球物理勘探领域内的研究进展[J]. 物探与化探, 2024, 48(2): 411-427.
[3] 余永鹏, 张广兵, 黄自军, 闫建波, 王嘉文, 杨彦成, 毛兴军. 多源测井数据预测煤层工业组分和发热量模型研究[J]. 物探与化探, 2024, 48(1): 185-193.
[4] 喻忠鸿, 严玲琴, 张占雄, 李鹏, 李凤廷, 付佳. 东昆仑地区打柴沟金矿地球物理特征及深部找矿预测[J]. 物探与化探, 2024, 48(1): 40-47.
[5] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
[6] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[7] 吴成平, 杨雪, 于长春, 熊盛青, 范正国, 苏永军, 郝兴中. 利用磁场水平调整方法实现航磁数据融合——以山东省齐河—禹城地区为例[J]. 物探与化探, 2023, 47(4): 1071-1077.
[8] 虎新军, 陈晓晶, 仵阳, 白亚东, 赵福元. 基于地球物理资料的宁夏南部地区断裂格架特征分析[J]. 物探与化探, 2023, 47(4): 916-925.
[9] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[10] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[11] 杨朝义, 朱乾坤, 揭绍鹏, 孔垂爱, 沙有财, 钟志勇, 沈啟武, 陈志军, 马火林. 云南普朗铜矿井孔测井资料综合应用[J]. 物探与化探, 2023, 47(1): 14-21.
[12] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[13] 虎新军, 陈晓晶, 仵阳, 安百州, 倪萍. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4): 845-853.
[14] 冯军, 蒋文, 张征. 新疆维权银铜多金属矿地质—地球物理找矿模式及成矿模型[J]. 物探与化探, 2022, 46(4): 868-876.
[15] 李筱, 佟晶, 张婉, 姚国涛, 张玄杰. 航空地球物理勘探在南极调查中的应用[J]. 物探与化探, 2022, 46(1): 12-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com