Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 411-427    DOI: 10.11720/wtyht.2024.1304
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
分布式光纤声学传感系统在地球物理勘探领域内的研究进展
周绍钰1(), 包乾宗1,2,3(), 石卫4,5
1.长安大学 地质工程与测绘学院,陕西 西安 710054
2.自然资源部 矿山地质灾害成灾机理与防控重点实验室,陕西 西安 710054
3.海洋油气勘探国家工程研究中心,陕西 西安 710054
4.陕西省城市地质与地下空间工程技术研究中心,陕西 西安 710068
5.陕西省水工环地质调查中心,陕西 西安 710068
Advances in research on the distributed optical fiber acoustic sensing system in the field of geophysical exploration
ZHOU Shao-Yu1(), BAO Qian-Zong1,2,3(), SHI Wei4,5
1. School of Geological Engineering and Surveying, Chang’an University, Xi’an 710054,China
2.Key Laboratory of Mine Geological Disaster Mechanism and Prevention, Ministry of Natural Resources, Xi’an 710054,China
3. National Engineering Research Center for Offshore Oil and Gas Exploration, Xi’an 710054,China
4. Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space, Xi’an 710068, China
5. Shaanxi Hydrogeolog Engineering Geology and Environment Geology Survey Center, Xi’an 710068, China
全文: PDF(7793 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

分布式声波传感(DAS)技术作为最先进的声场检测技术之一,能够对与光纤相互作用的环境振动和声场信息进行分布式、长距离、高精度的实时检测。DAS技术中的光纤勘探系统解决了常规检波器在复杂地质环境中成本高、布设难度大等问题。近年来,DAS技术得到了快速的发展,尤其在需要长期、大规模布设的监测应用场景中得到了迅速的发展,但其相关研究成果较为发散,系统性认识较少。为深入了解DAS技术在地球物理勘探领域内的研究进展,更好地开展后期研究,本文通过文献调研,对DAS技术自身的发展进程与其近期在地球物理勘探领域内取得的研究成果,按照油气、海洋和环境工程3个不同的应用场景进行系统的分类总结,着重关注DAS技术近年来在不同方向上的发展进程、数据处理方面的研究进展以及已经取得成果的相关文献;最后,对现阶段基于DAS采集系统的发展趋势和亟待解决的问题进行了概括,对未来DAS的发展前景进行了分析。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周绍钰
包乾宗
石卫
关键词 分布式声波传感技术地球物理勘探文献调研成果总结    
Abstract

Distributed acoustic sensing (DAS) technology, one of the most advanced sound field detection technologies, can achieve distributed, long-distance, and high-precision real-time detection of the ambient vibration and sound field information interacting with optical fiber. The optical fiber exploration system of the DAS technology solves the problems of high cost and deployment difficulty of conventional geophones in complex geological environments. In recent years, the DAS technology has experienced rapid development, especially in monitoring application scenarios that require long-term and large-scale deployment. However, its systematic understanding is insufficient due to divergent research results. To further understand the research advances of the DAS technology in geophysical exploration for more effective subsequent research, this study systematically classified and summarized the development history of the DAS technology and its recent research results in geophysical exploration based on the oil and gas, marine, and environmental engineering application scenarios through literature research. This study focused on the development process of the DAS technology in different directions, the research advances in data processing, and relevant literature with specific results. Finally, this study generalized the development trend and urgent problems of the DAS acquisition system, analyzing the DAS development prospect.

Key wordsdistributed acoustic sensing technology    geophysical exploration    literature research    result summary
收稿日期: 2023-07-11      修回日期: 2023-12-01      出版日期: 2024-04-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目课题“黄土地质体/灾害体结构和物性参数大范围快速探测技术装备”(2022YFC3003402);陕西省自然科学基金项目“高铁地震数据分析与应用”(2021JM-156)
通讯作者: 包乾宗
作者简介: 周绍钰(2000-),女,资源与环境专业硕士研究生。Email:429563289@qq.com
引用本文:   
周绍钰, 包乾宗, 石卫. 分布式光纤声学传感系统在地球物理勘探领域内的研究进展[J]. 物探与化探, 2024, 48(2): 411-427.
ZHOU Shao-Yu, BAO Qian-Zong, SHI Wei. Advances in research on the distributed optical fiber acoustic sensing system in the field of geophysical exploration. Geophysical and Geochemical Exploration, 2024, 48(2): 411-427.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1304      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/411
Fig.1  发表年份趋势
Fig.2  国家或地区发表的文献数量(数据来源:Web of Science)
Fig.3  主要文献类型及同类型文献数量对比
Fig.4  研究方向与文献数量对比
Fig.5  数据库文献聚类图谱(数据来源:Web of Science)
Fig.6  数据库文献时间图谱(数据来源:Web of Science)
Fig.7  数据库文献时间图谱(数据来源:中国知网)
Fig.8  数据库文献聚类图谱(数据来源:中国知网)
Fig.9  三种传感器原理示意[9]
Fig.10  地表地震剖面(左)和DAS Walkaway VSP图像沿Walkaway VSP测量线插入地表地震剖面(右)[33]
Fig.11  加砂量与每段产气量的对比[42]
Fig.12  利用神经网络估计的FORGE速度模型[60]
Fig.13  DAS测量和水听器相同信号的功率谱密度(PSD)与气枪射击之间的环境噪声的比较[65]
Fig.14  基于小样本集的DAS海量数据事件检测算例[75]
Fig.15  DAS技术将提供全新物探方法
Fig.16  人工智能为DAS技术带来的改变
Fig.17  DAS技术在CCUS中的应用
Fig.18  DAS技术在环境安全监测领域的应用
[1] 许文良, 任建国, 章军锋. 实验地球科学的前沿与发展战略[J]. 地球科学, 2022, 47(8):2667-2678.
[1] Xu W L, Ren J G, Zhang J F. Frontiers and development strategies of experimental geoscience[J]. Earth Science, 2022, 47(8):2667-2678.
[2] Olofsson B, Martinez A. Validation of DAS data integrity against standard geophones—DAS field test at Aquistore site[J]. The Leading Edge, 2017, 36(12):981-986.
doi: 10.1190/tle36120981.1
[3] Carpenter C. Downhole sand-ingress detection with fiber-optic distributed acoustic sensors[J]. Journal of Petroleum Technology, 2017, 69(10):99-101.
doi: 10.2118/1017-0099-JPT
[4] Chen D, Liu Q W, He Z Y. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution[J]. Optics Express, 2018, 26(13):16138-16146.
doi: 10.1364/OE.26.016138 pmid: 30119450
[5] Spikes K T, Tisato N, Hess T E, et al. Comparison of geophone and surface-deployed distributed acoustic sensing seismic data[J]. Geophysics, 2019, 84(2):A25-A29.
[6] 马国旗, 曹丹平, 尹教建, 等. 分布式声传感井中地震信号检测数值模拟方法[J]. 石油地球物理勘探, 2020, 55(2):311-320,229-230.
[6] Ma G Q, Cao D P, Yin J J, et al. Numerical simulation of detecting seismic signals in DAS wells[J]. Oil Geophysical Prospecting, 2020, 55(2):311-320,229-230.
[7] 韩青云. 基于稀疏表示的DAS数据降噪方法研究[D]. 成都: 电子科技大学, 2019.
[7] Han Q Y. Research on denoising method of DAS data based on sparse representation[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[8] Dou S, Ajo-Franklin J, Daley T, et al. Surface orbital vibrator (SOV) and fiber-optic DAS:Field demonstration of economical,continuous-land seismic time-lapse monitoring from the Australian CO2CRC Otway site[C]// SEG Technical Program Expanded Abstracts 2016.Dallas,Texas.Society of Exploration Geophysicists, 2016:5552-5556.
[9] 孙艺玫, 赵雷, 罗斐, 等. 分布式光纤传感器原理及在地震监测中的应用研究现状[J]. 防灾减灾学报, 2022, 38(1):67-73.
[9] Sun Y M, Zhao L, Luo F, et al. Principles and application research status of distributed optical fiber sensor[J]. Journal of Disaster Prevention and Reduction, 2022, 38(1):67-73.
[10] Huang W Z, Feng S W, Zhang W T, et al. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[J]. Optics Express, 2016, 24(11):12321-12329.
doi: 10.1364/OE.24.012321 pmid: 27410147
[11] Ma T H, Tang C A, Tang L X, et al. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station[J]. Tunnelling and Underground Space Technology, 2015, 49:345-368.
doi: 10.1016/j.tust.2015.04.016
[12] 朱萍, 刘茵, 刘金涛, 等. 光纤技术在地震勘探领域的应用[J]. 物探装备, 2013, 23(1):29-32.
[12] Zhu P, Liu Y, Liu J T, et al. Application of optical fiber technology in seismic exploration[J]. Equipment for Geophysical Prospecting, 2013, 23(1):29-32.
[13] Zhang X F, Lyu Z H, Meng X W, et al. Application of optical fiber sensing real-time monitoring technology using in Ripley landslide[J]. Applied Mechanics and Materials, 2014, 610:199-204.
doi: 10.4028/www.scientific.net/AMM.610
[14] 苟量, 张少华, 余刚, 等. 光纤传感推动油藏地球物理技术智能创新发展[J]. 石油科技论坛, 2021, 40(5):55-64.
[14] Gou L, Zhang S H, Yu G, et al. Optical sensing promotes intelligence,innovation and development of reservoir geophysical technology[J]. Petroleum Science and Technology Forum, 2021, 40(5):55-64.
[15] 郑骊昂. 大气偏振光学模拟实验装置设计与介质特性研究[D]. 合肥: 合肥工业大学, 2016.
[15] Zheng L A. The design of simulation experiment device for researching on polarization characteristics of light[D]. Hefei: Hefei University of Technology, 2016.
[16] 王振宇, 林伯韬, 艾白布·阿不力米提.DAS与DTS光纤测试技术在水平井中的应用[J]. 测井技术, 2022, 46(4):478-486.
[16] Wang Z Y, Lin B T, Abeib Abulmiti.Application of DAS and DTS optical fiber testing technology in horizontal wells[J]. Well Logging Technology, 2022, 46(4):478-486.
[17] 张辉, 吕庆田, 张毅, 等. 光纤布拉格光栅(FBG)和分布式声波传感器(DAS)在地学中的应用进展及发展方向[J]. 地球物理学进展, 2023, 38(3):1416-1454.
[17] Zhang H, Lyu Q T, Zhang Y, et al. Recent advances in geoscience using Fiber Bragg Grating(FBG)and Distrusted Acoustic Sensing(DAS)and the road ahead[J]. Progress in Geophysics, 2023, 38(3):1416-1454.
[18] 蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报, 2018, 36(1):41-58.
[18] Cai H W, Ye Q, Wang Z Y, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1):41-58.
[19] 王子恒, 景洪. 分布式光纤声波传感系统的研究与工程应用[J]. 传感器世界, 2020, 26(12):12-18.
[19] Wang Z H, Jing H. Research and application of distributed optical fiber acoustic sensor system[J]. Sensor World, 2020, 26(12):12-18.
[20] 时旸. 井中分布式光纤声波传感数据噪声压制方法研究[D]. 成都: 电子科技大学, 2018.
[20] Shi Y. Research on denoising method of DAS seismic signals[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[21] 邢桐. 多尺度特征渐进融合算法研究及其在DAS噪声压制中的应用[D]. 长春: 吉林大学, 2022.
[21] Xing T. Research on multi-scale feature progressive fusion algorithm and its application in DAS noise suppression[D]. Changchun: Jilin University, 2022.
[22] 宋政宏, 曾祥方, 徐善辉, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅰ:主动源高频面波[J]. 地球物理学报, 2020, 63(2):532-540.
doi: 10.6038/cjg2020N0184
[22] Song Z H, Zeng X F, Xu S H, et al. Distributed Acoustic Sensing for imaging shallow structureⅠ:Active source survey[J]. Chinese Journal of Geophysics, 2020, 63(2):532-540.
[23] 林融冰, 曾祥方, 宋政宏, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅱ:背景噪声成像[J]. 地球物理学报, 2020, 63(4):1622-1629.
doi: 10.6038/cjg2020N0272
[23] Lin R B, Zeng X F, Song Z H, et al. Distributed acoustic sensing for imaging shallow structure Ⅱ:Ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(4):1622-1629.
[24] 雷宇航, 尹扶, 洪鹤庭, 等. 基于MF-J变换的DAS观测高阶面波提取和浅地表结构成像[J]. 地球物理学报, 2021, 64(12):4280-4291.
[24] Lei Y H, Yin F, Hong H T, et al. Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation[J]. Chinese Journal of Geophysics, 2021, 64(12):4280-4291.
[25] 林融冰, 包丰, 谢军, 等. 光缆布设方式对DAS主、被动源记录的影响[J]. 地球物理学报, 2022, 65(10):4087-4098.
[25] Lin R B, Bao F, Xie J, et al. The influence of cable installment on DAS active and passive source records[J]. Chinese Journal of Geophysics, 2022, 65(10):4087-4098.
[26] 尹教建, 尹超凡, 孙上饶, 等. 基于Simulink的分布式光纤声波传感系统仿真实验[J]. 实验技术与管理, 2022, 39(9):90-96.
[26] Yin J J, Yin C F, Sun S R, et al. Simulation experiment of distributed fiber acoustic sensing system based on Simulink[J]. Experimental Technology and Management, 2022, 39(9):90-96.
[27] 朱光明. 垂直地震剖面法[J]. 石油地球物理勘探, 1980, 15(S2):1-23.
[27] Zhu G M. Vertical seismic profiling method[J]. Oil Geophysical Prospecting, 1980, 15(S2):1-23.
[28] Madsen K N, Dümmong S, Parker T, et al. Simultaneous Multiwell VSP using Distributed Acoustic Sensing[C]// Proceedings "Borehole Geophysics Workshop II.April 21-24,2013. St Julian’s,Malta.Netherlands: EAGE Publications BV,2013.
[29] 闫正和, 罗东红, 唐圣来, 等. 基于光纤分布式声波传感的井下多相流测试研究[J]. 油气井测试, 2017, 26(2):9-12,75.
[29] Yan Z H, Luo D H, Tang S L, et al. Study on down-hole multiphase flow measurement system based on fiber distributed acoustic sense[J]. Well Testing, 2017, 26(2):9-12,75.
[30] Naldrett G, Parker T, Shatalin S, et al. High-resolution Carina distributed acoustic fibreoptic sensor for permanent reservoir monitoring and extending the reach into subsea fields[J]. First Break, 2020, 38(2):71-6.
[31] Mateeva A, Lopez J, Mestayer J, et al. Distributed acoustic sensing for reservoir monitoring with VSP[J]. The Leading Edge, 2013, 32(10):1278-1283.
doi: 10.1190/tle32101278.1
[32] Sidenko E, Tertyshnikov K, Bona A, et al. DAS-VSP interferometric imaging:CO2CRC Otway Project feasibility study[J]. Interpretation, 2021, 9(4):1-12.
[33] Yu G, Cai Z D, Chen Y Z, et al. Borehole seismic survey using multimode optical fibers in a hybrid wireline[J]. Measurement, 2018, 125:694-703.
doi: 10.1016/j.measurement.2018.04.058
[34] 刘飞, 秦俐, 陈沅忠, 等. DAS-VSP采集技术在四川盆地的应用[J]. 天然气勘探与开发, 2021, 44(3):36-43.
[34] Liu F, Qin L, Chen Y Z, et al. Application of DAS-VSP acquisition to Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(3):36-43.
[35] 赵霏, 吴鹏, 王渝, 等. DAS-VSP采集处理方法研究及应用[J]. 石油物探, 2022, 61(1):100-111.
doi: 10.3969/j.issn.1000-1441.2022.01.011
[35] Zhao F, Wu P, Wang Y, et al. Research and application of the DAS-VSP acquisition and processing method[J]. Geophysical Prospecting for Petroleum, 2022, 61(1):100-111.
doi: 10.3969/j.issn.1000-1441.2022.01.011
[36] Guo Y L, Peng S P, Du W F, et al. Denoising and wavefield separation method for DAS VSP via deep learning[J]. Journal of Applied Geophysics, 2023, 210:104946.
doi: 10.1016/j.jappgeo.2023.104946
[37] 周小慧, 陈伟, 杨江峰, 等. DAS技术在油气地球物理中的应用综述[J]. 地球物理学进展, 2021, 36(1):338-350.
[37] Zhou X H, Chen W, Yang J F, et al. Application review of DAS technology in oil and gas geophysics[J]. Progress in Geophysics, 2021, 36(1):338-350.
[38] Johannessen K, Drakeley B, Farhadiroushan M. Distributed acoustic sensing:A new way of listening to your well/reservoir[C]// SPE,Utrecht,The Netherlands,March 27-29, 2012.
[39] van der Horst J, den Boer H, in 't Panhuis P, et al. Fiber optic sensing for improved wellbore production surveillance[C]// European Association of Geoscientists & Engineers. IPTC 2014:International Petroleum Technology Conference.Doha,Qatar. 2014.
[40] Carpenter C. Distributed acoustic sensing for downhole production and injection profiling[J]. Journal of Petroleum Technology, 2016, 68(3):78-79.
[41] Liang X, Mei J, Zhang C, et al. Fluid production profile monitoring of marine shale reservoir using fiber sensing within the coiled tubing[C]// First EAGE Workshop on Fibre Optic Sensing.Amsterdam,the Netherlands,European Association of Geoscientists & Engineers, 2020:1-4.
[42] 马小明, 李良成, 张永社. 油气井分布式光纤生产监测技术研究[C]// 2021IPPTC国际石油石化技术会议论文集.北京, 2021:121-129.
[42] Ma X M, Li L C, Zhang Y S. Research on distributed fiber optic production monitoring technology for oil and gas wells[C]// 2021 IPPTC International Petroleum and Petrochemical Technology Conference Proceedings,Beijing, 2021:121-129.
[43] 李彦鹏, 刘学刚, 王大兴, 等. DAS井地联合勘探实例分析——以长庆油田环县三维井地联采为例[J]. 石油物探, 2022, 61(1):112-121.
doi: 10.3969/j.issn.1000-1441.2022.01.012
[43] Li Y P, Liu X G, Wang D X, et al. DAS joint VSP and 3D surface seismic:A case study on HX3D in the Changqing oilfield[J]. Geophysical Prospecting for Petroleum, 2022, 61(1):112-121.
doi: 10.3969/j.issn.1000-1441.2022.01.012
[44] 江同文, 王胜军, 朱松柏, 等. 分布式光纤声波传感系统在西部已开发气田井下断层活动性监测中的试验研究与应用[J]. 地球物理学进展, 2022, 37(5):1960-1968.
[44] Jiang T W, Wang S J, Zhu S B, et al. Fault stability analysis and evaluation by long-term micro-seismic monitoring with distributed optical fiber acoustic sensing system in a gas field West China[J]. Progress in Geophysics, 2022, 37(5):1960-1968.
[45] 倪家升, 刘铁根, 尚盈, 等. 用于石油物探的分布式光纤声波地震检波器[J]. 激光与光电子学进展, 2022, 59(3):0306006.
[45] Ni J S, Liu T G, Shang Y, et al. Distributed fiber-optic acoustic seismic geophone for petroleum geology exploration[J]. Laser & Optoelectronics Progress, 2022, 59(3):0306006.
[46] Gao J Z, Jiang Z D, Zhao Y L, et al. Full distributed fiber optical sensor for intrusion detection in application to buried pipelines[J]. Chinese Optics Letters, 2005, 3(11):633-635.
[47] 曲志刚, 靳世久, 周琰. 油气管道安全分布式光纤预警系统研究[J]. 压电与声光, 2006, 28(6):640-642.
[47] Qu Z G, Jin S J, Zhou Y. Study on the distributed optical fiber pre-warning system for the safety of oil and gas pipeline[J]. Piezoelectrics & Acoustooptics, 2006, 28(6):640-642.
[48] 涂勤昌, 韦波, 张真毅, 等. OTDR型分布式光纤传感器在油气管道监测中的应用[J]. 管道技术与设备, 2015(3):28-31.
[48] Tu Q C, Wei B, Zhang Z Y, et al. OTDR-type distributed optical fiber sensors and application of oil and gas pipelines online monitoring[J]. Pipeline Technique and Equipment, 2015(3):28-31.
[49] Stajanca P, Chruscicki S, Homann T, et al. Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing[J]. Sensors, 2018, 18(9):2841.
doi: 10.3390/s18092841
[50] Peng Z Q, Jian J N, Wen H Q, et al. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions[J]. Optics Express, 2020, 28(19):27277-27292.
doi: 10.1364/OE.397509 pmid: 32988024
[51] Jiang J P, Liu F, Wang H H, et al. Lateral positioning of vibration source for underground pipeline monitoring based on ultra-weak fiber Bragg grating sensing array[J]. Measurement, 2021, 172:108892.
doi: 10.1016/j.measurement.2020.108892
[52] Li T D, Fan C Z, Li H, et al. Nonintrusive distributed flow rate sensing system based on flow-induced vibrations detection[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70:3036684.
[53] 王子恒, 景洪. 分布式光纤声波传感的管道泄漏监测指标分析[J]. 中国仪器仪表, 2021(8):61-65.
[53] Wang Z H, Jing H. Analysis of pipeline leakage monitoring index based on distributed optical fiber acoustic sensing system[J]. China Instrumentation, 2021(8):61-65.
[54] 王辰, 刘庆文, 陈典, 等. 基于分布式光纤声波传感的管道泄漏监测[J]. 光学学报, 2019, 39(10):111-117.
[54] Wang C, Liu Q W, Chen D, et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 2019, 39(10):111-117.
[55] 李通达. 基于光纤分布式声波传感的管道流速及泄露监测技术研究[D]. 武汉: 华中科技大学, 2021.
[55] Li T D. Research on pipeline velocity and leakage monitoring technology based on optical fiber distributed acoustic sensing[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[56] 张丽, 周巍. 集输管道分布式光纤声波泄漏监测系统的设计与试验[J]. 油气田地面工程, 2021, 40(8):57-64.
[56] Zhang L, Zhou W. Design and experimental study of distributed optical fiber acoustic leakage detection system for gathering and transportation pipeline[J]. Oil-Gas Field Surface Engineering, 2021, 40(8):57-64.
[57] 林融冰, 曾祥方, 包丰, 等. 基于分布式光纤声波传感技术的管道侵入识别与定位[J]. 油气储运, 2021, 40(5):545-553,560.
[57] Lin R B, Zeng X F, Bao F, et al. Detection and localization of pipeline intrusion with distributed optical fiber acoustic sensing technology[J]. Oil & Gas Storage and Transportation, 2021, 40(5):545-553,560.
[58] Chai J, Lei W L, Du W G, et al. Experimental study on distributed optical fiber sensing monitoring for ground surface deformation in extra-thick coal seam mining under ultra-thick conglomerate[J]. Optical Fiber Technology, 2019, 53:102006.
doi: 10.1016/j.yofte.2019.102006
[59] 王昌, 尚盈, 王晨, 等. 分布式光纤声波地震波勘探技术[J]. 山东科学, 2021, 34(4):1-8.
doi: 10.3976/j.issn.1002-4026.2021.04.001
[59] Wang C, Shang Y, Wang C, et al. Distributed optical fiber acoustic seismic wave exploration technology[J]. Shandong Science, 2021, 34(4):1-8.
[60] Wamriew D, Pevzner R, Maltsev E, et al. Deep neural networks for detection and location of microseismic events and velocity model inversion from microseismic data acquired by distributed acoustic sensing array[J]. Sensors, 2021, 21(19):6627.
doi: 10.3390/s21196627
[61] 刘辉, 李静, 迟本鑫. 基于应变率的分布式光纤声波传感全波形反演研究[J]. 地球物理学报, 2022, 65(9):3584-3598.
[61] Liu H, Li J, Chi B X. Study of distributed acoustic sensing data waveform inversion based on strain rate[J]. Chinese Journal of Geophysics, 2022, 65(9):3584-3598.
[62] 江峻毅, 高兴国, 王方旗, 等. 海洋地球物理综合探测法在海底管线探测的应用研究[J]. 电力勘测设计, 2020(S1):200-204.
[62] Jiang J Y, Gao X G, Wang F Q, et al. Study on the application of marine geophysical comprehensive detection method in submarine pipeline detection[J]. Electric Power Survey & Design, 2020(S1):200-204.
[63] 刘保华, 丁继胜, 裴彦良, 等. 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展, 2005, 23(3):374-384.
[63] Liu B H, Ding J S, Pei Y L, et al. Marine geophysical survey techniques and their applications to offshore engineering[J]. Advances in Marine Science, 2005, 23(3):374-384.
[64] 陈同彦, 蒋习民. 海底管道分布式光纤传感器安装工艺研究[J]. 中国石油大学胜利学院学报, 2020, 34(4):27-31.
[64] Chen T Y, Jiang X M. Research on installation technology of distributed fiber optic sensor in submarine pipeline[J]. Journal of Shengli College China University of Petroleum, 2020, 34(4):27-31.
[65] Matsumoto H, Araki E, Kimura T, et al. Detection of hydroacoustic signals on a fiber-optic submarine cable[J]. Scientific Reports, 2021, 11:2797.
doi: 10.1038/s41598-021-82093-8 pmid: 33531541
[66] 黄毓华, 李辰, 孙廷玺. 海底电缆运行状态监测技术研究[J]. 中国新技术新产品, 2021(14):8-11.
[66] Huang Y H, Li C, Sun T X. Research on monitoring technology of submarine cable operation state[J]. New Technology & New Products of China, 2021(14):8-11.
[67] 宛立君, 吴梦实, 严爱博. 基于分布式光纤声波传感的海洋环境噪声监测技术[J]. 声学与电子工程, 2021(2):11-14.
[67] Wan L J, Wu M S, Yan A B. Marine environmental noise monitoring technology based on distributed optical fiber acoustic sensing[J]. Acoustics and Electronics Engineering, 2021(2):11-14.
[68] 吴文婧, 冯新. 基于分布式光纤传感的海底管线横向屈曲识别方法[J]. 应用科学学报, 2022, 40(5):779-789.
[68] Wu W J, Feng X. Recognition method of lateral buckling of submarine pipeline based on distributed optical fiber sensing[J]. Journal of Applied Sciences, 2022, 40(5):779-789.
[69] Wang T, Guomai S Y, Zhang L M, et al. Earthquake emergency response framework on campus based on multi-source data monitoring[J]. Journal of Cleaner Production, 2019, 238:117965.
doi: 10.1016/j.jclepro.2019.117965
[70] Papp B, Donno D, Martin J E, et al. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments[J]. Geophysical Prospecting, 2017, 65(5):1186-1204.
doi: 10.1111/gpr.2017.65.issue-5
[71] Wang B S, Zeng X F, Song Z H, et al. Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable[J]. Chinese Science Bulletin, 2021, 66(20):2590-2595.
[72] Hudson T S, Baird A F, Kendall J M, et al. Distributed acoustic sensing (DAS) for natural microseismicity studies:A case study from Antarctica[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(7):1-14.
[73] Nayak A, Ajo-Franklin J. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes[J]. Seismological Research Letters, 2021, 92(4):2441-2452.
doi: 10.1785/0220200416
[74] 余双勇. 基于DAS分布式光纤声学传感地震检波器设计[D]. 长春: 长春理工大学, 2022.
[74] Yu S Y. Design of distributed optical fiber acoustic sensor geophone based on DAS[D]. Changchun: Changchun University of Science and Technology, 2022.
[75] Lyu H, Zeng X F, Bao F, et al. ADE-net:A deep neural network for DAS earthquake detection trained with a limited number of positive samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3143120.
[76] Kowarik S, Hussels M T, Chruscicki S, et al. Fiber optic train monitoring with distributed acoustic sensing:Conventional and neural network data analysis[J]. Sensors, 2020, 20(2):450.
doi: 10.3390/s20020450
[77] Wiesmeyr C, Litzenberger M, Waser M, et al. Real-time train tracking from distributed acoustic sensing data[J]. Applied Sciences, 2020, 10(2):448.
doi: 10.3390/app10020448
[78] Wang S L, Liu F, Liu B. Research on application of deep convolutional network in high-speed railway track inspection based on distributed fiber acoustic sensing[J]. Optics Communications, 2021, 492:126981.
doi: 10.1016/j.optcom.2021.126981
[79] 李卫斌. 用于铁路基础设施综合监测的分布式光纤传感器[J]. 中国市政工程, 2022(1):81-84,88,127.
[79] Li W B. Distributed fiber optic sensors for comprehensive monitoring of railway infrastructure[J]. China Municipal Engineering, 2022(1):81-84,88,127.
[80] 何佳朋. 基于分布式光纤声波传感的高速公路运行状况在线监测方法[D]. 成都: 电子科技大学, 2018.
[80] He J P. On-line monitoring method of expressway operation based on distributed optical fiber acoustic wave sensing[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[81] Wang Y B, Schuster G T. Interferometric interpolation of missing seismic data[C]// SEG Technical Program Expanded Abstracts 2007.Society of Exploration Geophysicists, 2007:2688-2692.
[82] Vasconcelos I, Snieder R. Interferometry by deconvolution:Part 1—Theory for acoustic waves and numerical examples[J]. Geophysics, 2008, 73(3):S115-S128.
[83] Keiiti A. Space and Time Spectra of Stationary Stochastic Waves,with Special Reference to Microtremors[J]. Institute of Seismology, University of Tokyo, 1957, 35(3):415-56.
[84] 曹卫平, 黄旭日, 姚海, 等. 分布式光纤声波传感系统记录的交通噪声的干涉处理分析[J]. 地球物理学报, 2021, 64(7):2530-2539.
doi: 10.6038/cjg2021O0513
[84] Cao W P, Huang X R, Yao H, et al. Seismic interferometry for traffic noise recorded by a distributed acoustic sensing system[J]. Chinese Journal of Geophysics, 2021, 64(7):2530-2539.
[85] 胡蝶. 基于光纤分布式声波传感的隧道加固钢环失效监测技术研究[D]. 武汉: 华中科技大学, 2021.
[85] Hu D. Research on failure monitoring technology of tunnel reinforcement steel ring based on optical fiber distributed acoustic wave sensing[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[86] 曹承, 孔凡东, 褚昊, 等. 基于分布式光纤的沥青道面振动状态感知技术[J]. 民航学报, 2022, 6(6):38-43.
[86] Cao C, Kong F D, Chu H, et al. Vibration monitoring of asphalt runway using distributed optical fiber sensor[J]. Journal of Civil Aviation, 2022, 6(6):38-43.
[87] 纪然然, 宛立君, 吴梦实. 分布式光纤声波传感技术在PCCP管道监测中的应用[J]. 声学与电子工程, 2021(2):15-17,20.
[87] Ji R R, Wan L J, Wu M S. Application of distributed optical fiber acoustic wave sensing technology in PCCP pipeline monitoring[J]. Acoustics and Electronics Engineering, 2021(2):15-17,20.
[88] 燕东源, 李长作, 郝海龙, 等. 基于分布式光纤传感技术的边坡岩土体变形智能监测[J]. 自动化与仪器仪表, 2022(12):176-180,185.
[88] Yan D Y, Li C Z, Hao H L, et al. Intelligent monitoring of slope rock and soil deformation based on distributed optical fiber sensing technology[J]. Automation & Instrumentation, 2022(12):176-180,185.
[89] 冯红耀, 王杨, 汪辛. 基于新型分布式传感器的桥梁监测技术研究[C]// 第十四届全国边坡工程技术大会论文集.昆明, 2022:452-459.
[89] Feng H Y, Wang Y, Wang X. Research on bridge monitoring technology based on new distributed sensor[C]// Proceedings of the 14th National Slope Engineering Technology Conference.Kunming,China, 2022:452-459.
[90] 苟量, 张少华, 余刚, 等. 光纤地球物理技术的发展现状与展望[J]. 石油物探, 2022, 61(1):15-31.
doi: 10.3969/j.issn.1000-1441.2022.01.002
[90] Gou L, Zhang S H, Yu G, et al. Optical fiber geophysics:Development status and future prospects[J]. Geophysical Prospecting for Petroleum, 2022, 61(1):15-31.
doi: 10.3969/j.issn.1000-1441.2022.01.002
[91] 董书豪. 我国碳捕获、利用与封存(CCUS)技术的发展现状与展望[J]. 广东化工, 2021, 48(17):69-70.
[91] Dong S H. Development status and prospect of carbon capture,utilization and storage(CCUS) technology in China[J]. Guangdong Chemical Industry, 2021, 48(17):69-70.
[92] 曹瑶煜. 光纤与光栅传感技术在环境监测中的应用研究[D]. 上海: 上海第二工业大学, 2019.
[92] Cao Y Y. Application research of optical fiber sensing and fiber grating sensing technology in environmental monitoring[D]. Shanghai: Shanghai Second Polytechnic University, 2019.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[3] 原文涛. 瞬变电磁法在采空区及陷落柱探测中的应用[J]. 物探与化探, 2012, 36(S1): 164-167.
[4] 薛永军, 武秀芳, 仲丛明, 李玉林. 煤矿小窑采空区及塌陷区的地球物理勘查[J]. 物探与化探, 2012, 36(S1): 111-113.
[5] 吴以雄. 电磁驻波法地球物理勘探[J]. 物探与化探, 2008, 32(6): 639-646.
[6] 周坚鑫, 刘浩军, 王守坦, 安战锋, 余学中, 张玉君. 国外航空重力测量在地学中的应用[J]. 物探与化探, 2004, 28(2): 119-122.
[7] 吴璐苹, 石昆法. 松山地下热水勘探及成因模式探讨[J]. 物探与化探, 1996, 20(4): 309-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com