Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 597-607    DOI: 10.11720/wtyht.2022.1562
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
隐伏岩浆型铜镍矿空—地—井协同勘查技术体系
黄旭钊1(), 范正国1, 何敬梓1,2, 葛藤菲1,2, 王思浔1, 满毅3, 王鹏3, 李军3, 王恒3
1.中国自然资源航空物探遥感中心,北京 100083
2.中国地质大学(北京) 地球物理与信息技术学院, 北京 100083
3.新疆维吾尔自治区地质矿产勘查开发局 第六地质大队,新疆 哈密 839000
A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper-nickel deposits
HUANG Xu-Zhao1(), FAN Zheng-Guo1, HE Jing-Zi1,2, GE Teng-Fei1,2, WANG Si-Xun1, MAN Yi3, WANG Peng3, LI Jun3, WANG Heng3
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. School of Geophysics and Information Technology,China University of Geosciences (Beijing), Beijing 100083,China
3. No. 6 Geological Brigade, Xinjiang Bureau of Geology and Mineral Development, Hami 839000, China
全文: PDF(11503 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来我国能源及矿产资源需求旺盛,覆盖区找矿已成为热点,急需有针对性的新方法技术解决覆盖区勘查找矿问题。本文提出一种针对覆盖区找岩浆型铜镍矿的空—地—井协同快速找矿方法技术体系,并建立了针对隐伏岩浆型铜镍矿的深部矿产资源空—地—井协同快速有效勘查技术体系的架构及说明。该技术体系以覆盖区的地形、地质和深部矿产资源分布特点为前提条件,以综合航空地球物理为主、协同地面—井中地球物理探测方法为手段,以大数据融合、弱信息提取、地球物理-地质建模方法为重点,以地质构造和成矿理论为指导。该技术体系在新疆若羌县启鑫地区隐伏岩浆型铜镍矿床勘查中得到验证,并取得较好的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄旭钊
范正国
何敬梓
葛藤菲
王思浔
满毅
王鹏
李军
王恒
关键词 岩浆型铜镍矿空—地—井协同勘查组织协同技术协同技术体系    
Abstract

In recent years, prospecting in coverage areas has become an important topic in China due to the strong demand for energy and mineral resources, and there is an urgent need for new targeted methods and technologies of prospecting. This study put forward a technology system for the collaborative and rapid prospecting of copper-nickel deposits in coverage areas that combines airborne-ground-borehole prospecting methods and technologies. Meanwhile, this study established the framework and description of the collaborative, rapid, and effective exploration technology system. Taking the terrain and geology of coverage areas, as well as the distribution characteristics of deep mineral resources in the area as preconditions, this technology system mainly uses the methods of aero geophysics combined with ground and borehole geophysical exploration and focuses on big data fusion, weak information extraction, and geophysical-geological modeling methods. Meanwhile, it takes geological structure and metallogenic theory as guidance. This technical system has been verified in the exploration of the concealed magmatic copper-nickel deposit in the Qixin area, Ruoqiang County, Xinjiang, achieving positive results.

Key wordsmagmatic copper-nickel deposits    collaborative airborne-ground-borehole geophysical exploration    organizational collaboration    technical collaboration    technology system
收稿日期: 2021-10-14      修回日期: 2021-12-24      出版日期: 2022-06-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目(2017YFC0602206);中国地质调查局项目“秦岭及天山等重点成矿区带航空物探调查”(DD20160066);“秦岭—大别造山带航空物探遥感调查”(DD20190551)
作者简介: 黄旭钊(1962-),女,硕士,教授级高级工程师,长期从事航空物探综合解释工作。Email: huangxz@agrs.cn
引用本文:   
黄旭钊, 范正国, 何敬梓, 葛藤菲, 王思浔, 满毅, 王鹏, 李军, 王恒. 隐伏岩浆型铜镍矿空—地—井协同勘查技术体系[J]. 物探与化探, 2022, 46(3): 597-607.
HUANG Xu-Zhao, FAN Zheng-Guo, HE Jing-Zi, GE Teng-Fei, WANG Si-Xun, MAN Yi, WANG Peng, LI Jun, WANG Heng. A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper-nickel deposits. Geophysical and Geochemical Exploration, 2022, 46(3): 597-607.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1562      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/597
Fig.1  岩浆型铜镍矿快速协同勘查技术体系流程
Fig.2  东天山—北山地区大地构造和基性-超基性岩体分布(a)(据文献[21]修编)及区域位置(b)(据文献[22]修编)
Fig.3  启鑫远景区部分成果图件
a—航磁ΔT立体阴影图;b—航磁垂向梯度立体阴影图;c—航磁垂向分量立体阴影图;d—航空电磁TEM第0道立体阴影图;e—航空伽马能谱总道立体阴影图;f—推断岩性构造图,白色框为启北找矿有利区范围;1—推断超基性侵入岩;2—推断以负磁场为特征的基性侵入岩;3—推断以正磁场为特征的基性侵入岩;4—推断橄榄苏长岩、辉石橄长岩、辉长辉绿岩;5—推断弱磁性橄榄辉长岩;6—推断闪长岩;7—推断二叠纪酸性侵入岩;8—推断二叠系红柳河组;9—推断石炭系干墩组;10—推断古元古界敦煌岩群;11—推断断裂
Fig.4  启北找矿靶区综合物探成果
a—地磁ΔT等值线平面图;b—剩余重力等值线平面图;c—视电阻率等值线平面图;d—视极化率等值线平面图
Fig.5  3D地球物理反演源数据
Fig.6  4950剖面所在截面视密度(a)、视磁化率(b)及其断面融合分类结果(c)
聚类结果 视磁化率/
(10-5SI)
相对密度/
(g·cm-3)
对应岩性
类别1 150 -0.13 长英质变质岩系或长石
砂岩类或花岗岩类
类别2 1290 -0.12 辉长岩类
类别3 310 0.05 辉长岩类
类别4 350 0.33 橄榄岩类或含铜镍矿
体的橄榄岩
类别5 340 0.15 辉石岩类或橄榄岩类
类别6 4290 0.05 辉长岩类
类别7 2790 0.08 辉长岩类
类别8 4240 -0.09 蛇纹石化橄榄岩
类别9 4940 -0.01 蛇纹石化橄榄岩
类别10 2960 -0.12 辉绿岩类
类别11 310 -0.13 辉长岩类
Table 1  4950剖面所在截面视磁化率与视密度融合分类
Fig.7  启鑫勘查区4线综合剖面成果
Fig.8  启鑫勘查区ZK4-2孔测井曲线
Fig.9  启鑫杂岩体三维地质模型
[1] 严加永, 孟贵祥, 吕庆田, 等. 综合地球物理在荒漠覆盖区隐伏矿床预测与定位中的应用:以新疆拉伊克勒克铜多金属矿床为例[J]. 地球物理学报, 2021, 64(11):4117-4133.
[1] Yan J Y, Meng G X, Lyu Q T, et al. Prediction and location of concealed deposits in desert gobi coverage areas using intergrated geophysics: An example of the Layikeleke copper polymetallic deposit in Xinjiang, Northwest China[J]. Chinese Journal of Geophysics, 2021, 64(11): 4117-4133.
[2] 姚卓森, 秦克章. 造山带中岩浆铜镍硫化物矿床的地球物理勘探:现状、问题与展望[J]. 地球物理学进展, 2014, 29(6):2800-2817.
[2] Yao Z S, Qin K Z. Geophysical exploration for magmatic Cu-Ni sulfide deposits in the orogenic belt: current status, problems and vistas[J]. Progress in Geophysics, 2014, 29(6): 2800-2817.
[3] 谢燮, 李文明, 孙吉明, 等. 新疆北山地区白山镁铁—超镁铁岩体LA-ICP-MS钻石U-Pb年龄、地球化学特征及其找矿意义[J]. 地质科技情报, 2018, 37(6):11-21.
[3] Xie X, Li W M, Sun J M, et al. Geochemistry and zircon U-Pb dating of the Baishan mafic-ultramafic rock complex in the Beishan area of Xinjiang and its prospecting significance[J]. Geological Science and Technology Information, 2018, 37(6): 11-21.
[4] Xue S C, Li C S, Wang Q F, et al. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfide prospect, southern Central Asian Orogenic Belt, NW China[J]. Ore Geology Reviews, 2019, 111: 1-18.
[5] He J Z, Fan Z G, Xiong S Q, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology, 2021(1): 126-146.
[6] 宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报:自然科学, 2018, 54(2):221-235.
[6] Song X Y, Hu R Z, Chen L M. Characteristics and inspiration of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University:Natural Science, 2018, 54(2): 221-235.
[7] 刘月高, 吕新彪, 阮班晓, 等. 新疆北山早二叠世岩浆铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 2019, 38(3):644-666.
[7] Liu Y G, Lyu X B, Ruan B X, et al. A comprehensive information exploration model for magmatic Cu-Ni sulfide deposits in Beishan, Xinjiang[J]. Mineral Deposits, 2019, 38(3): 644-666.
[8] 葛藤菲, 黄旭钊, 范正国, 等. 一种基于重磁数据智能融合的深部地质建模方法[J]. 地球物理学进展, 2020, 35(6): 2323-2331.
[8] Ge T F, Huang X Z, Fan Z G, et al. Intelligent fusion based on gravity and magnetic data deep geologic modeling method[J]. Progress in Geophysics, 2020, 35(6): 2323-2331.
[9] 史培军, 潘耀忠, 陈云浩, 等. 多尺度生态资产遥感综合测量的技术体系[J]. 地球科学进展, 2002, 17(2):169-173.
[9] Shi P J, Pan Y Z, Chen Y J, et al. Technical system of ecological capital intergrated measurement using multi-scale remotely sensed data[J]. Advance in Earth Sciences, 2002, 17(2): 169-173.
[10] 杨伟利, 王毅, 王传刚, 等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报, 2010, 84(4):579-586.
[10] Yang L W, Wang Y, Wang C G, et al. Distribution and co-exploration of multiple energy minerals in Ordos Basin[J]. Acta Geological Sinica, 2010, 84(4): 579-586.
[11] 李增学, 王佟, 王怀洪, 等. 多能源矿产协同勘查理论与技术体系研究[J]. 中国煤炭地质, 2011, 23(4):68-72.
[11] Li Z X, Wang T, Wang H H, et al. Theory and technical system study on multiple energy mineral resources exploration in coordination[J]. Coal Geology of China, 2011, 23(4): 68-72.
[12] 王毅, 杨伟利, 邓军, 等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探——以鄂尔多斯盆地为例[J]. 地质学报, 2014, 88(5):815-823.
[12] Wang Y, Yang L W, Deng J, et al. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedimentary basin :A case study of Ordos Basin, NW China[J]. Acta Geological Sinica, 2014, 88(5): 815-823.
[13] 满荣江. 我国煤田地质的的综合勘查技术体系[J]. 黑龙江科学, 2016, 7(10):56-57.
[13] Man R J. Comprehensive exploration technology system of coal field geology[J]. Heilongjiang Science, 2016, 7(10): 56-57.
[14] 刘欢, 王立娟, 廖紫骅, 等. “空天地”三位一体的山区铁路综合勘察技术体系及应用[J]. 北京测绘, 2019, 33(12):1479-1485.
[14] Liu H, Wang L J, Liao Z H, et al. The integrated survey technical system and application of “Space-Air-Ground” in mountains region of railway[J]. Beijing Surveying and Mapping, 2019, 33(12): 1479-1485.
[15] 范正国, 黄旭钊, 熊盛青, 等. 磁测资料应用技术要求[M]. 北京: 地质出版社, 2010:51-55.
[15] Fan Z G, Huang X Z, Xiong S Q, et al. Technical requirements for the application of magnetic data[M]. Beijing: Geological Publishing House, 2010:51-55.
[16] 黄敏, 刘洋旭, 蔡永丰. 新疆北山启鑫基性-超基性岩体地球化学特征及地质意义[J]. 新疆地质, 2018, 36(1):44-50.
[16] Huang M, Liu Y X, Cai Y F. Geochemical characteristics of Qixin mafic-ultramafic pluton in Beishan, Xinjiang Province and Its geological significance[J]. Xinjiang Geology, 2018, 36(1): 44-50.
[17] 苏本勋, 秦克章, 孙赫, 等. 新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征:对同化混染和结晶分异过程的启示[J]. 岩石学报, 2009, 25(4):873-887.
[17] Su B X, Qin K Z, Sun H, et al. Petrological and mineralogical characteristics of Hongshishan mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization[J]. Acta Petrologica Sinica, 2009, 25(4): 873-887.
[18] 卢鸿飞, 赵献军, 郭勇明, 等. 北山裂谷红石山镍矿床特征及成因——多期岩浆成矿作用[J]. 新疆地质, 2012, 30(2):187-191.
[18] Lu H F, Zhao X J, Guo Y M, et al. The characteristic of Hongshishan nickel deposit in Xinjiang Beishan rift and its cause-multi-time rock magma mineralization[J]. Xinjiang Geology, 2012, 30(2): 187-191.
[19] 阮班晓, 吕新彪, 俞颖敏, 等. 新疆北山二叠纪镁铁-超镁铁质岩成因、成矿作用和找矿信息[J]. 地球科学, 2020, 45(12):4481-4497.
[19] Ruan B X, Lü X B, Yu M, et al. Petrogenesis, mineralization and prospecting information of Permian mafic-ultramafic rocks, Beishan, Xinjiang[J]. Earth Science, 2020, 45(12): 4481-4497.
[20] 王恒, 王鹏, 李建, 等. 新疆若羌坡北地区镁铁-超镁铁质侵入岩含矿特征及找矿方法探讨[J]. 中国地质, 2015, 42(3):777-784.
[20] Wang H, Wang P, Li J, et al. A tentative discussion on features of mafic-ultramafic rocks and exploration methods in Pobei area of Ruoqiang, Xinjang[J]. Geology in China, 2015, 42(3): 777-784.
[21] Su B X, Qin K Z, Santosh M, et al. The Early Permian mafic-ultramafic complexes in the Beishan Terrane, NW China: Alaskan-type intrusives or rift cumulates?[J]. Journal of Asian Earth Sciences, 2013, 66: 175-187.
doi: 10.1016/j.jseaes.2012.12.039
[22] Sun T, Qian Z Z, Deng Y F, et al. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China[J]. Economic Geology, 2013, 108: 1849-1864.
doi: 10.2113/econgeo.108.8.1849
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[3] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[4] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[5] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[6] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[7] 王永飞, 董之凯, 吕文祥, 李宝新, 马冰. 四川省510铀矿床中铀及伴生元素的分带特征[J]. 物探与化探, 2023, 47(4): 881-891.
[8] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[9] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[10] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[11] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[12] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
[13] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[14] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[15] 刘畅, 张参辉, 张鑫, 纵瑞. 河南灵宝董家埝银矿床流体包裹体特征及矿床成因[J]. 物探与化探, 2023, 47(2): 343-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com