Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 12-21    DOI: 10.11720/wtyht.2022.1076
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空地球物理勘探在南极调查中的应用
李筱1,2,3(), 佟晶1, 张婉1, 姚国涛1, 张玄杰1
1.中国自然资源航空物探遥感中心,北京 100083
2.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
3.中国地质大学(北京) 海洋学院,北京 100083
Application of airborne geophysical survey in antarctica
LI Xiao1,2,3(), TONG Jing1, ZHANG Wan1, YAO Guo-Tao1, ZHANG Xuan-Jie1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083,China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology of MNR,Beijing 10083,China
3. School of Ocean Sciences,China University of Geosciences(Beijing), Beijing 100083,China
全文: PDF(2664 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

航空地球物理勘探是认识极地区域构造的重要技术手段。在回顾和分析南极航空地球物理勘探发展历史与现状的基础上,总结归纳了航空地球物理勘探在南极地区取得的主要成果。归纳出南极地壳结构研究、南极古大陆重建与恢复、南极火山与岩浆作用调查和南极冰架与地质相互作用研究等4方面典型实例,航空地球物理勘探为南极地区域地质构造研究提供了有效的技术支撑。目前,南极部分区域仍为航空地球物理勘探的空白区,可将成功的经验应用于下一步的实际工作中,特别是将航空重、磁方法与航空冰雷达探测方法相结合,已成为解决南极冰层与基岩相互作用问题的未来趋势,也为我国南极航空地球物理勘探提供了方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李筱
佟晶
张婉
姚国涛
张玄杰
关键词 航空物探南极地球物理调查现状地球物理应用    
Abstract

Airborne geophysical techniques represent a cost-effective way for obtaining insights into the crustal geology of the Antarctic. Based on the analysis of the history of Antarctic airbrone geophysical survey and development of facilities and fly-platform applied in the survey, this paper gives a review of the leading scientific application topic of airborne geophysical data i.e.,the crustal structure of Antarctica,the reconstruction and restoration of ancient terrains, magmatism and volcanism identification,and the interaction between Antarctica Ice Shelf and bed rock, which shows that airborne geophysical survey provides effective technical support for Antarctica geosciences research.Our research shows that there is still a blank area for geophysical survey. Based on out review, the combination of airborne magnetic, airborne gravity and ice radar data has provide a new solution to the interaction study of Antarctic Ice shelf and bedrock.

Key wordsairborne geophysical survey    Antarctica    current situation of geophysical survey    geophysical data application
收稿日期: 2021-02-09      出版日期: 2022-02-25
:  P631  
基金资助:自然资源部“航空地球物理与遥感地质重点实验室青年创新基金”(2020YFL27);中国地质调查局公益性地质调查项目“雷琼东部海域航空物探调查”(DD20190210)
作者简介: 李筱(1991-),男,博士研究生,研究方向为海洋地质。Email: 840491636@qq.com
引用本文:   
李筱, 佟晶, 张婉, 姚国涛, 张玄杰. 航空地球物理勘探在南极调查中的应用[J]. 物探与化探, 2022, 46(1): 12-21.
LI Xiao, TONG Jing, ZHANG Wan, YAO Guo-Tao, ZHANG Xuan-Jie. Application of airborne geophysical survey in antarctica. Geophysical and Geochemical Exploration, 2022, 46(1): 12-21.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1076      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/12
飞行器参数 BT-67 Twin Otter Dornier 228
总长/m 20.7 15.8 16.56
翼展/m 29.0 19.8 16.97
最大起飞质量/kg 13 000 5 670 6 600
可用载荷/kg 3 900 1 941 2 340
燃料储备量/kg 4 686 1 128 5 300
耗油量/(kg·h-1) 500 230 500
标准巡航速度/(km·h-1)
(高度为3810m时)
380 265 315
最大飞行高度/m 7 600 8 137 8 535
最大续航里程/km 3 440 1 705 1 111
续航时间/h ~9 ~5 10
引擎型号 PWC PT6A-67R PWC PT6A-27 TPE-331-5-252D
发动机功率 1424SHP 652SHP 578HP
雪上或陆地上起降能力 轮子或轮子与雪橇结合 轮子、雪橇或轮子与雪橇结合 轮子、雪橇或轮子与雪橇结合
雪上起飞/降落滑行距离/m 760 360 790
飞行员数量 2 2 2
Table 1  极地航空物探固定翼平台性能参数对比
Fig.1  南极地球物理数据覆盖情况[7,8]
a—航空重力数据覆盖情况;b—ADMAP-2航磁数据覆盖情况
Fig.2  TOAST地体的航磁异常与平面范围[15]
a—TOAST地体的航磁异常;b—TOAST地体范围
Fig.3  Enderby盆地东部重、磁震联合反演剖面[17]
Fig.4  基于 Leeuwin模型恢复[24]的160 Ma冈瓦纳大陆南极Wilkes地与澳大利亚近南极侧古大陆对比重建图[23]
a—航磁总场异常;b—均衡剩余重力异常
Fig.5  基于航空重力数据反演得到的Dotson冰架冰下地形[29]
a—南极沿岸冰架接地线示意;b—阿蒙德森海沿岸航空重力异常;c—航空重力数据观测曲线与反演拟合计算曲线;d—基于航空重力数据反演得到的Dotson冰架冰下E-E'剖面地形(粉色为MBES测量数据,黑色为重力反演结果曲线)
Fig.6  南极地热通量分布[33](底图为南极冰下地形)
Fig.7  Taylor峡谷电阻率反演成果(a)与地下水流通解释模式(b)[6]
[1] Weihaupt J G, Rice A, Van d H F G. Gravity anomalies of the Antarctic lithosphere[J]. Lithosphere, 2010,2(6):454-461.
doi: 10.1130/L116.1
[2] Johnson A C, Frese R R B V, Group A W. Magnetic map will define Antarctica’s structure[J]. Eos Transactions American Geophysical Union, 2013,78(18):185-185.
[3] 高晟俊, 郝卫峰, 李斐, 等. 极地航空重力测量及其应用进展[J]. 极地研究, 2018,30(1):97-113.
[3] Gao S J, Hao W F, Li F, et al. Progress in application of airborne gravity measurements in polar regions[J]. Chinese Journal of Polar Research, 2018,30(1):97-113.
[4] Studinger M, Bell R, Frearson N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications[J]. Geophysics, 2008,73(6):151-161.
[5] Pfaffling A, Reid J E. Sea ice as an evaluation target for HEM modelling and inversion[J]. Journal of Applied Geophysics, 2009,67(3):242-249.
doi: 10.1016/j.jappgeo.2008.05.010
[6] Mikucki J, Auken E, Tulaczyk S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015,6:6831.
doi: 10.1038/ncomms7831 pmid: 25919365
[7] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):1-15,54.
[8] Golynsky A V, Ferraccioli F, Hong J K, et al. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 2018,45(13):6437-6449.
doi: 10.1029/2018GL078153
[9] Scheinert M, Ferraccioli F, et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 2016,43(2):600-610.
doi: 10.1002/2015GL067439 pmid: 29326484
[10] Jordan T A, Riley T R, Siddoway C S. The geological history and evolution of West Antarctica[J]. Nature Reviews Earth & Environment, 2020,1(2):1-17.
[11] Artemieva I M, Thybo H. Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system[J]. Earth-Science Reviews, 2020,202:103106.
doi: 10.1016/j.earscirev.2020.103106
[12] Jordan T A, Neale R F, Leat P T, et al. Structure and evolution of Cenozoic arc magmatism on the Antarctic Peninsula: A high resolution aeromagnetic perspective[J]. Geophysical Journal International, 2014,198(3):1758-1774.
doi: 10.1093/gji/ggu233
[13] Bakhmutov Y V. Crustal structure of the Antarctic Peninsula sector of the Gondwana margin around Anvers Island from geophysical data[J]. Tectonophysics, 2013,585:77-89.
doi: 10.1016/j.tecto.2012.09.029
[14] Elburg M, Jacobs J, Andersen T, et al. Early Neoproterozoic metagabbro-tonalite-trondh -jemite of Sr Rondane (East Antarctica):Implications for supercontinent assembly[J]. Precambrian Research, 2015,259:189-206.
doi: 10.1016/j.precamres.2014.10.014
[15] Ruppel A, Jacobs J, Eagles G, et al. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST)[J]. Gondwana Research: International Geoscience Journal, 2018,59:97-107.
[16] Jordan T A, Ferraccioli F, Armadillo E, et al. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data[J]. Tectonophysics, 2013,585:196-206.
doi: 10.1016/j.tecto.2012.06.041
[17] Davis J K, Lawver L A, Norton I O, et al. The crustal structure of the Enderby Basin, East Antarctica[J]. Marine Geophysical Research, 2019,40:1-16.
doi: 10.1007/s11001-018-9356-5
[18] 牛雄伟, 高金耀, 吴招才, 等. 南极洲普里兹湾石圈各向异性:海底地震仪观测[J]. 地球科学, 2016,41(11):1950-1958.
[18] Niu X W, Gao J Y, Wu Z C, et al. Lithosphere anisotropy of Prydz Bay,Antarctica: From ocean bottom seismometer long term observation[J]. Earth Science, 2016,41(11):1950-1958.
[19] Dunkley D J, Hokada T. Geological subdivision of the Lützow-Holm Complex in East Antarctica: From the Neoarchean to the Neoproterozoic[J]. Polar Science, 2020,26:100606.
doi: 10.1016/j.polar.2020.100606
[20] Ebbing J, Dilixiati Y, Haas P, et al. East Antarctica magnetically linked to its ancient neighbours in Gondwana[J]. Scientific Reports, 2021,11(1):5513.
doi: 10.1038/s41598-021-84834-1 pmid: 33750869
[21] Riedel S, Jacobs J, Jokat W. Interpretation of new regional aeromagnetic data over Dronning Maud Land (East Antarctica)[J]. Tectonophysics, 2013,585:161-171.
doi: 10.1016/j.tecto.2012.10.011
[22] Leinweber V T, Jokat W. The Jurassic history of the Africa-Antarctica corridor — new constraints from magnetic data on the conjugate continental margins [J]. Tectonophysics, 2012, 530-531:87-101.
doi: 10.1016/j.tecto.2011.11.008
[23] Aitken A R A, Betts P G, Young D A, et al. The Australo-Antarctic Columbia to Gondwana transition[J]. Gondwana Research, 2016,29:136-152.
doi: 10.1016/j.gr.2014.10.019
[24] Williams S E, Whittaker J M, Müller R D. Full-fit,palinspastic reconstruction of the conjugate Australian-Antarctic margins [J]. Tectonics, 2011, 30, TC6012:1-21.
[25] Van Wyk de Vries, M, Bingham R G, et al. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica[J]. Geological Society, London, Special Publications, 2017: 461(1):231-248.
doi: 10.1144/SP461.7
[26] Jordan T A, Ferraccioli F, Jones P C, et al. Airborne gravity reveals interior of antarctic volcano[J]. Physics of the Earth and Planetary Interiors, 2009,175(3-4):127-136.
doi: 10.1016/j.pepi.2009.03.004
[27] Ghidella M E, Zambrano O M, Ferraccioli F, et al. Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data[J]. Tectonophysics, 2013,585:90-101.
doi: 10.1016/j.tecto.2012.06.039
[28] Jordan T A, David B. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data[J]. Physics of the Earth & Planetary Interiors, 2018,282:77-88.
[29] Millan R, Bignot E, Bernier V, et al. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data[J]. Geophysical Research Letters, 2017,44(3):1360-1368.
doi: 10.1002/grl.v44.3
[30] Constantino R R, Tinto K J, Bell R E, et al. Seafloor Depth of George VI Sound, Antarctic Peninsula, From Inversion of Aerogravity Data[J]. Geophysical Research Letters, 2020,47(21):1-10.
[31] Martos Y M, Catalan M, Jordan T A, et al. Heat flux distribution of Antarctica unveiled[J]. Geophysical Research Letters, 2017,44(22):11417-11426.
doi: 10.1002/grl.v44.22
[32] Burton J A, Dziadek R, Martin C. Geothermal heat flow in Antarctica: Current and future directions[J]. Cryosphere Discussions, 2020,14(11):3843-3873.
[33] Pfaffling A C, Haas, Reid J E. Empirical processing of HEM data for sea ice thickness mapping[C]//10th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts, 2004.
[34] Reid J E, Pfaffling A, Worby A P, et al. In situ measurements of the direct-current conductivity of Antarctic sea ice: Implications for airborne electromagnetic sounding of sea-ice thickness[J]. Annals of Glaciology, 2006,44(7):217-223.
doi: 10.3189/172756406781811772
[35] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):54.
doi: 10.3390/hydrology6020054
[1] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[2] 冯磊, 周伟, 陈瑶, 李文吉. 航空物探工作程度图批量定制技术研究[J]. 物探与化探, 2019, 43(1): 153-160.
[3] 崔志强. 高精度航空物探在重要成矿带资源调查中的应用[J]. 物探与化探, 2018, 42(1): 38-49.
[4] 肖都, 李军峰. 一种用于航空物探测量的无人机路径规划方法[J]. 物探与化探, 2017, 41(3): 564-569.
[5] 贺海扬, 沈正新, 安政伟, 邱崇涛. 基于MapGIS实现图件自动裁剪与图例生成[J]. 物探与化探, 2017, 41(3): 550-555.
[6] 高维, 舒晴, 屈进红, 米耀辉. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016, 40(6): 1116-1124.
[7] 崔志强, 孟庆敏. 高精度航空物探在湘赣边区地质构造 研究中的应用[J]. 物探与化探, 2016, 40(3): 493-501.
[8] 高维, 舒晴, 屈进红, 周坚鑫, 乔阳, 尹航. 航空物探飞机典型飞行状态下振动特性研究[J]. 物探与化探, 2016, 40(1): 93-99.
[9] 王林飞, 薛典军, 李芳, 何辉. 航空物探测量数据共享技术研究与应用[J]. 物探与化探, 2015, 39(S1): 152-156.
[10] 吴成平, 于长春. 磁日变数据模拟输出软硬件研制[J]. 物探与化探, 2015, 39(1): 192-195.
[11] 何辉, 王林飞, 王明. 无人值守的航空物探测量测线索引自动编辑软件设计与实现[J]. 物探与化探, 2014, 38(6): 1298-1301.
[12] 崔志强, 胥值礼, 孟庆敏. 国内主要航空物探飞行平台特点及发展[J]. 物探与化探, 2014, 38(6): 1107-1113.
[13] 何辉, 薛典军, 王林飞. 地球物理数据处理解释系统中坐标转换的设计及实现[J]. 物探与化探, 2014, 38(5): 1060-1063.
[14] 吴高微, 闫红雨. 基于MapGIS K9的航空物探图框绘制软件开发[J]. 物探与化探, 2014, (3): 607-609.
[15] 何辉, 薛典军, 张洪瑞, 王林飞, 骆遥. 航空物探平面立体阴影图的绘制[J]. 物探与化探, 2013, 37(5): 937-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com