Please wait a minute...
E-mail Alert Rss
物探与化探  2022, Vol. 46 Issue (2): 285-295    DOI: 10.11720/wtyht.2022.1045
  综述 本期目录 | 过刊浏览 | 高级检索 |
金久强, 于长春, 石磊, 徐明, 张京卯, 郭亮, 蒋久明
中国自然资源航空物探遥感中心,北京 100083
A review of foreign system integration technologies for airborne geophysical prospecting (2015~2020)
JIN Jiu-Qiang, YU Chang-Chun, SHI Lei, XU Ming, ZHANG Jing-Mao, GUO Liang, JIANG Jiu-Ming
China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083,China
全文: PDF(9082 KB)   HTML
输出: BibTeX | EndNote (RIS)      

梳理了2015~2020年之间国外主要的航空物探系统集成技术的现状和进展情况。在这一时期,一些旧的系统进行了改进,也有一些不再适合市场需要而被淘汰。新的系统集成方法不断涌现:随着修正算法的改进,磁梯度吊舱开始被广泛应用;无人机系统的飞行控制能力和负载能力显著提升,已应用于磁、电、重、伽马能谱各领域;SQUID 磁张量、FTG 重力张量系统先后投入了航空物探商业运行,电磁法系统的信噪比进一步提升,碘化铯晶体重新受到航空伽马能谱测量设备制造公司的青睐。作为21世纪的战略技术,这些进展值得引起我们的注意。

E-mail Alert
关键词 航空物探系统集成技术吊舱无人机现状和进展    

This paper summarizes the current status and progress of major system integration technologies for airborne geophysical prospecting used abroad from 2015 to 2020. During this period, some old systems were improved, while some became obsolete. Meanwhile, new system integration methods constantly emerged during this period. Specifically, towed birds using geomagnetic gradient began to be widely applied. At the same time, with the significant improvement of flight control and load capacity, UAVs were widely applied in magnetic, electromagnetic, gravity, and gamma-ray spectrometry fields. SQUID magnetic tensor gradiometers and FTG gravity tensor gradiometers were successively put into commercial airborne geophysical prospecting. The signal-to-noise ratio of electromagnetic systems was significantly improved, and CsI (Tl) scintillators were preferred by companies producing gamma-ray spectrometry instruments.

Key wordsairborne geophysical prospecting    system integration technology    towed bird    UAV    current status and progress
收稿日期: 2021-01-26      修回日期: 2021-11-09      出版日期: 2022-04-20
ZTFLH:  P631  
作者简介: 金久强(1985-),男,2007年毕业于中国科技大学,从事航空物探测量系统集成及降噪方法研究工作。
金久强, 于长春, 石磊, 徐明, 张京卯, 郭亮, 蒋久明. 国外航空物探系统集成技术回顾(2015~2020)[J]. 物探与化探, 2022, 46(2): 285-295.
JIN Jiu-Qiang, YU Chang-Chun, SHI Lei, XU Ming, ZHANG Jing-Mao, GUO Liang, JIANG Jiu-Ming. A review of foreign system integration technologies for airborne geophysical prospecting (2015~2020). Geophysical and Geochemical Exploration, 2022, 46(2): 285-295.
链接本文:      或
Fig.1  典型硬架磁测系统
Fig.2  典型旋翼机软吊磁标量测量系统
Fig.3  典型旋翼机软吊磁梯度测量系统
Fig.4  SQUID磁张量测量系统
系统 模式 公司 国家
AGP EM TD Aerogeophysica Inc. 俄国
AirTEM TD Triumph Surveys 加拿大
ATLAS FD Precision Geosurveys 加拿大
BIPTEM TD Thomson Aviation 澳大利亚
EQUATOR[26] TD/FD GeoTechnologies 俄国
E-THEM TD EON Geosciences Inc. 加拿大
EXPLORERHEM FD Aerophysics 墨西哥
GPRTEM2 TD Geophysics GPR 加拿大
Heli-SAM[27-29] FD Discovery Inter. Geo. 加拿大
HeliTEM[30] TD CGG MultiPhysics 加拿大
Hummingbird FD EON Geosciences Inc. 加拿大
HyRez TD Terraquest 加拿大
IMPULSE FD Geotech Ltd. 加拿大
ITEM TD Precision GeoSurveys 加拿大
MobileMT[31] FD Expert Geophysics Ltd. 加拿大
NOVATEM TD Novatem Inc. 加拿大
Nu-TEM TD NUVIA Dynamics 加拿大
ProspecTEM TD ProspectairGeosurveys 加拿大
P-THEM TD Pico Envirotec 加拿大
Resolve FD CGG MultiPhysics 加拿大
SGFEM FD Sander Geophysics 加拿大
SkyTEM[32-34] TD SkyTEM 丹麦
Spectrem Plus[35-36] TD Spectrem Air 南非
Tempest TD CGG MultiPhysics 加拿大
VTEM[37-38] TD Geotech Ltd. 加拿大
Xcite TD New Resolution Geophysics 南非
ZTEM[39] FD Geotech Ltd. 加拿大
Table 1  2015~2020年国际上主要电磁系统一览
Fig.5  典型频率域电磁测量系统
Fig.6  典型时间域电磁测量系统
Fig.7  iMAR的iCORUS系统
Fig.8  典型重力梯度/张量仪器
Fig.9  典型无人机航空伽马能谱系统
Fig.10  Geotechnologies-RUS的 EQUATOR 时间域/伽马能谱吊舱
[1] 高维, 舒晴, 屈进红, 等. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016, 40(6):1116-1124.
[1] Gao W, Shu Q, Qu J H, et al. New progress of aerogeophysical techniques abroad[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1116-1124.
[2] 张洪瑞, 范正国. 2000年来西方国家航空物探技术的若干进展[J]. 物探与化探, 2007, 31(1):1-8.
[2] Zhang H R, Fan Z G. Recent advances in aerogeophysical techniques used abroad[J]. Geophysical and Geochemical Exploration, 2007, 31(1): 1-8.
[3] Legault J M. Airborne electromagnetic systems:State of the art and future directions[J]. Recorder, 2015, 40(6): 38-49.
[4] Veryaskin A V. Gravity, magnetic and electromagnetic gradiometry: Strategic technologies in the 21st Century (IOP Concise Physics)[M]. San Rafael: Morgan and Claypool Publishers, 2018.
[5] Killeen P G. Mineral exploration trends and developments in 2015-2019[M]. Toronto, Ontario: The Northern Miner, 2020.
[6] Tierney T M, Holmes N, Mellor S. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography[J]. Neuroimage, 2019, 199(1): 598-608.doi: 10.1016/j.neuroimage.2019.05.063.
doi: 10.1016/j.neuroimage.2019.05.063
[7] Butta M, Janosek M. Magnetic gradiometer with self-compensation of offset drift[C]// 2016 IEEE sensors, 2016.doi:10.1109/ICSENS.2016.7808502.
[8] Maire P L, Bertrand L, Munschy M. Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate magnetometer: A new method for rapid mapping and upscaling from the field to regional scale[J]. Geophysical Prospecting, 2020, 68(7): 2307-2319.doi: 10.1111/1365-2478.12991.
doi: 10.1111/1365-2478.12991
[9] Sander T H, Preusser J, Mhaskar R. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.doi: 10.1364/BOE.3.000981.
doi: 10.1364/BOE.3.000981 pmid: 22567591
[10] Veryaskin A V. Theory of operation of direct string magnetic gradiometer with proportional and integral feedback[J]. International Journal of Applied Electromagnetics and Mechanics, 2009, 29(3): 197-215.doi: 10.3233/JAE-2009-1014.
doi: 10.3233/JAE-2009-1014
[11] Alem O, Sander T H, Mhaskar R. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers[J]. Physics in Medicine & Biology, 2015, 60(12): 4797-4811.doi: 10.1088/0031-9155/60/12/4797.
doi: 10.1088/0031-9155/60/12/4797
[12] Sheng D, Perry A R, Kryzyzewski S P. A microfabricated optically-pumped magnetic gradiometer[J]. Applied Physics Letters, 2017, 110(3): 031106.doi: 10.1063/1.4974349.
doi: 10.1063/1.4974349
[13] Schiffler M, Queitsh M, Stolz R. Calibration of SQUID vector magnetometers in full tensor gradiometry systems[J]. Geophysical Journal International, 2014, 198: 954-964.doi: 10.1093/gji/ggu173.
doi: 10.1093/gji/ggu173
[14] Chwala A, Stolz R, Zakosarenko V, et al. Full tensor SQUID gradiometer for airborne exploration[J]. ASEG Extended Abstracts, 2012.doi: 10.1071/ASEG2012ab296.
doi: 10.1071/ASEG2012ab296
[15] Zuo B X, Wang L Z, Chen W T. Full tensor eigenvector analysis on air-borne magnetic gradiometer data for the detection of dipole-like magnetic sources[J]. Sensors, 2017, 17(9): 1976-1990.doi: 10.3390/s17091976.
doi: 10.3390/s17091976
[16] Karl K, Alexander P, Legault J M. Airborne inductive induced polarization chargeability mapping of VTEM data[J]. ASEG Extended Abstracts, 2015.doi: 10.1071/ASEG2015ab104.
doi: 10.1071/ASEG2015ab104
[17] Brown B, Effers F. The application of airborne geophysics for water exploration[J]. Recorder, 2017, 42(7): 14-19.
[18] Karen G, Anne T, Russell M. The Forrestania and Nepean electromagnetic test ranges, Western Australia: A comparison of airborne systems[J]. ASEG Extended Abstracts, 2019.doi: 10.1080/22020586.2019.12073208.
doi: 10.1080/22020586.2019.12073208
[19] Witherly K. Exploration Trends and Developments 2019 [J]. Preview, 2019. doi: 10.1080/14432471.2019.1623008.
doi: 10.1080/14432471.2019.1623008
[20] Sattel D, Battig E. Passive EM processing of MEGATEM and HELITEM data[J]. ASEG Extended Abstracts, 2018.doi: 10.1071/ASEG2018abT7_4F.
doi: 10.1071/ASEG2018abT7_4F
[21] Macnae J. Stripping very low frequency communication signals with minimum shift keying encoding from streamed time-domain electromagnetic data[J]. Geophysics, 2015, 80(6): 343-353.doi: 10.1190/geo2015-0304.1.
doi: 10.1190/GEO2015-0304.1
[22] Karshakov E V, Podmogov Y G, Kertsman V M. Combined frequency domain and time domain airborne data for environmental and engineering challenges[J]. Journal of Environmental and Engineering Geophysics, 2017, 22(1): 1-11.doi: 10.2113/JEEG22.1.1.
doi: 10.2113/JEEG22.1.1
[23] Moul F, Witherly K. A comparison of MobileMT with ZTEM and HELITEM over isolated conductors in the Athabasca Basin, Saskatchewan, Canada[J]. SEG Technical Program Expanded Abstracts, 2020: 1389-1393.doi: 10.1190/segam2020-3428466.1.
doi: 10.1190/segam2020-3428466.1
[24] Smiarowski A, Miles P, Konieczny G. CGG’S New Helitem-C AEM Systems[J]. ASEG Extended Abstracts, 2018.doi: 10.1071/ASEG2018abT7_3F.
doi: 10.1071/ASEG2018abT7_3F
[25] Konieczny G, Miles P, Smiarowski A. Breaking through the 25/30 Hz barrier: Lowering the base frequency of the Helitem airborne EM system[J]. SEG Technical Program Expanded Abstracts, 2016: 2218-2222.doi: 10.1190/segam2016-13957502.1.
doi: 10.1190/segam2016-13957502.1
[26] Chen T Y, Greg H, Philip M. MULTIPULSE-high resolution and high power in one TDEM system[J]. Exploration Geophysics, 2015, 46(1): 49-57.doi: 10.1071/EG14027.
doi: 10.1071/EG14027
[27] Legault J M, Izarra C, Prikhodko A. Comparing VTEM time-domain EM and ZTEM natural field airborne EM survey results over the McArthur River unconformity uranium project[J]. SEG Technical Program Expanded Abstracts, 2018.
[28] Eadie T, Legault J M, Plastow G. VTEM ET: An improved helicopter time-domain EM system for near surface applications[J]. ASEG Extended Abstracts, 2018.doi: 10.1071/ASEG2018abW9_3H.
doi: 10.1071/ASEG2018abW9_3H
[29] Jean L, Carlos I, Alexander P. Helicopter EM (ZTEM-VTEM) survey results over the Nuqrah copper-lead-zinc-gold SEDEX massive sulphide deposit in the Western Arabian Shield, Kingdom of Saudi Arabia[J]. Exploration Geophysics, 2015, 46(1): 36-48.doi: 10.1071/EG14028.
doi: 10.1071/EG14028
[30] Andersen K K, Nyboe N S, Kirkegaard C. A System Response Convolution Routine for Improved Near Surface Sensitivity in SkyTEM Data[C]// First European Airborne Electromagnetics Conference, 2015.doi:10.3997/2214-4609.201413874.
[31] Gissel P, Nyboe N S. Skytem high power systems: A new generation of airborne TEM transmitters[C]// Second European Airborne Electromagnetics Conference, 2017.doi:10.3997/2214-4609.201702155.
[32] Nyboe N S, Mai S S. Recent advances in Skytem receiver system technologies[C]// Second European Airborne Electromagnetics Conference, 2017, doi: 10.3997/2214-4609.201702157.
[33] Leggatt P. Extending the range of time constants recorded by the SPECTREM AEM system[J]. Exploration Geophysics, 2015, 46(1): 136-139.doi: 10.1071/EG14029.
doi: 10.1071/EG14029
[34] Devkurran N, Polomé L, Pitts B. Performance of the Spectrem PLUS system in Australian geological conditions[J]. ASEG Extended Abstracts, 2019.doi: 10.1080/22020586.2019.12073064.
doi: 10.1080/22020586.2019.12073064
[35] Becken M, Nittinger C G, Smirnova M. DESMEX: A novel system development for semi-airborne electromagnetic exploration[J]. Geophysics, 2020, 85(6): 1-49.doi: 10.1190/geo2019-0336.1.
doi: 10.1190/geo2019-0336.1
[36] Bingham D, Napier S, Mathieson T. Results from a galvanic HeliSAM survey over the Patterson Lake South uranium deposit[J]. SEG Technical Program Expanded Abstracts, 2018.doi: 10.1190/segam2018-2998497.1.
doi: 10.1190/segam2018-2998497.1
[37] Cattach M, Christopher P, Russell M. Sub-audio magnetics (SAM) — ground-based and HeliSAM FLEM trials at the Forrestania EM test range[J]. ASEG Extended Abstracts, 2018.doi: 10.1071/ASEG2018abT7_2F.
doi: 10.1071/ASEG2018abT7_2F
[38] Fairhead J D, Cooper G R J, Sander S. Advances in Airborne Gravity and Magnetics[C]// Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, 2017: 113-127.
[39] Lin C A, Chiang K W, Kuo C Y. Integration of INS and GNSS for gravimetric application with UAS[J]. International Society for Photogrammetry and Remote Sensing, 2018, XLII(1): 263-268.doi: 10.5194/isprs-archives-XLII-1-263-2018.
doi: 10.5194/isprs-archives-XLII-1-263-2018
[40] Douch K, Christophe B. Ultra-sensitive electrostatic planar acceleration gradiometer for airborne geophysical surveys[J]. Measurement Science and Technology, 2014, 25(10): 105902-105903.doi: 10.1088/0957-0233/25/10/105902.
doi: 10.1088/0957-0233/25/10/105902
[41] Douch K, Foulon B, Christophe B. A new planar electrostatic gravity gradiometer for airborne surveys[J]. Journal of Geodesy, 2013, 89(12): 1216-1219.doi: 10.1190/segam2013-1122.1.
doi: 10.1190/segam2013-1122.1
[42] Evstifeev M I. The state of the art in the development of onboard gravity gradiometers[J]. Gyroscopy and Navigation, 2017, 8(1): 68-79.doi: 10.1134/S2075108717010047.
doi: 10.1134/S2075108717010047
[43] DiFrancesco D. Advances in geophysical exploration: Sensors and platforms[C]// SEG Global Meeting Abstracts, 2019: 9-12.doi: 10.1190/GEM2019-003.1.
doi: 10.1190/GEM2019-003.1
[44] Galder C, Dransfield M. Full Spectrum Gravity — Improving AGG data quality at both ends of the spectrum[J]. ASEG Extended Abstracts, 2016.
[45] Hatch D, Wong H, Annecchione M. Validating the Gedex HD-AGG airborne gravity gradiometer[J]. ASEG Extended Abstracts, 2018.doi: 10.1071/ASEG2016ab111.
doi: 10.1071/ASEG2016ab111
[46] Aravanis T. VK1-a next generation airborne gravity gradiometer[J]. ASEG Extended Abstracts, 2016.doi: 10.1071/ASEG2016ab318.
doi: 10.1071/ASEG2016ab318
[47] International Atomic Energy Agency. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration:NF-T-1.5[M]. Vienna:IAEA, 2013.
[48] Mohammad U. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2016, 308(1): 438-462.doi: 10.1016/j.cej.2016.09.029.
doi: 10.1016/j.cej.2016.09.029
[49] Steven V, Ronald K, Fenny E. A drone as platform for airborne gamma-ray Surveys to characterize soil and monitor contaminations[C]// 24th European Meeting of Environmental and Engineering Geophysics, 2018.doi: 10.3997/2214-4609.201802510.
[50] Limburg J, Seht M I, Barrie C. Benchmarking a small footprint detector system for airborne surveying[R]. Medusa Systems BV, 2011.
[51] Canciani A, Raquet J. Airborne magnetic anomaly navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53: 67-80.doi: 10.1109/TAES.2017.2649238.
doi: 10.1109/TAES.2017.2649238
[52] Poddar S, Kumar V, Kumar A. A comprehensive overview of inertial sensor calibration techniques[J]. Journal of Dynamic Systems Measurements and Control, 2017, 139: 011006-011017.doi: 10.1115/1.4034419.
doi: 10.1115/1.4034419
[53] Zhdanov M S, Wei L. Adaptive multinary inversion of gravity and gravity gradiometry data[J]. Geophysics, 2017, 82(6): 101-114.doi: 10.1190/geo2016-0451.1.
doi: 10.1190/geo2016-0451.1
[54] Gao Q, Cheng D, Wang Y. A calibration method for the misalignment error between inertial navigation system and tri-axial magnetometer in three-component magnetic measurement system[J]. IEEE Sensors Journal, 2019, 19(24): 12217-12223.doi: 10.1109/JSEN.2019.2938297.
doi: 10.1109/JSEN.2019.2938297
[1] 张琦洁, 闫红雨, 张婷婷, 吴云, 高姗. 基于空间分析的航空物探专题底图制作方法——以达州—华蓥测区为例[J]. 物探与化探, 2022, 46(5): 1251-1257.
[2] 李筱, 佟晶, 张婉, 姚国涛, 张玄杰. 航空地球物理勘探在南极调查中的应用[J]. 物探与化探, 2022, 46(1): 12-21.
[3] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[4] 西永在, 吴珊, 廖桂香, 刘俊杰, 路宁, 李永博. 无人机航空磁测在滩涂区地质调查的应用试验[J]. 物探与化探, 2021, 45(2): 355-360.
[5] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[6] 冯磊, 周伟, 陈瑶, 李文吉. 航空物探工作程度图批量定制技术研究[J]. 物探与化探, 2019, 43(1): 153-160.
[7] 崔志强. 高精度航空物探在重要成矿带资源调查中的应用[J]. 物探与化探, 2018, 42(1): 38-49.
[8] 肖都, 李军峰. 一种用于航空物探测量的无人机路径规划方法[J]. 物探与化探, 2017, 41(3): 564-569.
[9] 贺海扬, 沈正新, 安政伟, 邱崇涛. 基于MapGIS实现图件自动裁剪与图例生成[J]. 物探与化探, 2017, 41(3): 550-555.
[10] 高维, 舒晴, 屈进红, 米耀辉. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016, 40(6): 1116-1124.
[11] 高国林, 邱崇涛, 王景丹, 沈正新, 李江坤. 无人机航放测量新技术的示范应用[J]. 物探与化探, 2016, 40(6): 1131-1137.
[12] 崔志强, 孟庆敏. 高精度航空物探在湘赣边区地质构造 研究中的应用[J]. 物探与化探, 2016, 40(3): 493-501.
[13] 高维, 舒晴, 屈进红, 周坚鑫, 乔阳, 尹航. 航空物探飞机典型飞行状态下振动特性研究[J]. 物探与化探, 2016, 40(1): 93-99.
[14] 王林飞, 薛典军, 李芳, 何辉. 航空物探测量数据共享技术研究与应用[J]. 物探与化探, 2015, 39(S1): 152-156.
[15] 吴成平, 于长春. 磁日变数据模拟输出软硬件研制[J]. 物探与化探, 2015, 39(1): 192-195.
Full text



版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083