Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1251-1257    DOI: 10.11720/wtyht.2022.1111
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于空间分析的航空物探专题底图制作方法——以达州—华蓥测区为例
张琦洁1,2(), 闫红雨1, 张婷婷3, 吴云1, 高姗1()
1.中国自然资源航空物探遥感中心,北京 100083
2.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
3.中国地质大学(北京) 土地科学技术学院,北京 100083
The method of making the airborne geophysical thematic base-map based on spatial analysis: Exemplified by the Dazhou-Huaying survey area
ZHANG Qi-Jie1,2(), YAN Hong-Yu1, ZHANG Ting-Ting3, WU Yun1, GAO Shan1()
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083,China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural and Resources,Beijing 100083,China
3. China University of Geosciences(Beijing), Beijing 100083,China
全文: PDF(2376 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地理底图是航空物探专题图的重要基础环节及组成部分,但以往人工手动抽稀处理方法较为繁琐。本文对航空物探专题底图的作用和现状问题进行分析, 引入空间分析方法,借助1:25万公众版地形数据库进行规划底图编制实践,完成地理要素矢量化。以四川省达州—华蓥测区为例进行测试,证实该方法制作的地理底图简便实用,相比以往处理方法,更加智能化,且制作成果快速准确,符合相关精度要求;此方法为航空物探专题图的精准制作提供了有力支撑,方便用户使用,同时也为航空物探的发展奠定了一定基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琦洁
闫红雨
张婷婷
吴云
高姗
关键词 空间分析航空物探地理底图GIS    
Abstract

Geographical base map is an important basic step and component of airborne geophysical thematic map; nevertheless, the previous treatment methods seem to be rather complicated. This paper analyzes the function and present situation of the thematic base map of aero geophysical exploration and introduces the spatial analysis method. With 1:250 000 public versions of terrain data, this paper discusses the idea and method of compiling the thematic base map of aerial geophysical exploration, and completes the vectorization of geographical elements. The Dazhou-Huaying survey area in Sichuan Province is chosen to perform test. It is shown that the basemap designed by this method is simple and practical and, compared with previous processing methods, it is more intelligent, and that the production results are fast and accurate and can meet the relevant precision requirements. This method provides a strong support for the accurate production of airborne geophysical thematic maps, and it is easy to use. At the same time, it also lays a foundation for the development of airborne geophysical exploration.

Key wordsspatial analysis method    aerial geophysical exploration    geographic base map    GIS
收稿日期: 2021-03-02      修回日期: 2021-08-23      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:自然资源部航空地球物理与遥感地质重点实验室课题(2020YFL10)
通讯作者: 高姗
作者简介: 张琦洁(1993-),女, 毕业于中国地质大学(北京)地质工程专业,主要从事航空物探数据处理与制图工作。Email:agrszhangqj@163.com
引用本文:   
张琦洁, 闫红雨, 张婷婷, 吴云, 高姗. 基于空间分析的航空物探专题底图制作方法——以达州—华蓥测区为例[J]. 物探与化探, 2022, 46(5): 1251-1257.
ZHANG Qi-Jie, YAN Hong-Yu, ZHANG Ting-Ting, WU Yun, GAO Shan. The method of making the airborne geophysical thematic base-map based on spatial analysis: Exemplified by the Dazhou-Huaying survey area. Geophysical and Geochemical Exploration, 2022, 46(5): 1251-1257.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1111      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1251
Fig.1  研究区位置示意
Fig.2  航空物探专题底图制作路线
Fig.3  研究区原始1:25万公众版地形
Fig.4  1:25万地形数据库(a)与1:400万地形数据库(b)水系要素对比
Fig.5  研究区内水系建立不同缓冲区半径200 m(a)、500 m(b)、700 m(c)对比效果
1 GB NAME RTEG Shape_Leng ORIG_FID SHAPE_Le_1
2 420201 通江—宣汉 一级 0.00170017890 5008 0.00169542388
3 420201 通江—宣汉 一级 0.00230199256 5011 0.00229593183
4 420201 通江—宣汉 一级 0.04683150071 5019 0.04684986891
5 420201 通江—宣汉 一级 0.00835471695 5025 0.00837386937
6 420201 通江—宣汉 一级 0.02443377707 5026 0.02447806681
7 420201 通江—宣汉 一级 0.02828130656 5028 0.02834725660
8 420201 通江—宣汉 一级 0.00206513023 5030 0.00207049178
9 420201 通江—宣汉 一级 0.01464946695 5043 0.01468501124
10 420201 通江—宣汉 一级 0.02952304377 5110 0.02948628145
11 420201 通江—宣汉 一级 0.02442210091 5111 0.02447001613
12 420201 通江—宣汉 一级 0.00671646023 5120 0.00671460132
Table 1  1:25万地形图公路属性信息
Fig.6  原始公路(a)及提取后公路(b)对比
Fig.7  原始居民区信息(a)及提取后的居民点信息(b)
Fig.8  航空物探专题底图要素
[1] 张新长, 艾廷华. 专题地图地理底图数据库的结构设计[J]. 测绘通报, 1994,(5):30-33.
[1] Zhang X C, Ai T H. Diagnostic system of vax computer and its application[J]. Bulletin of Surveying and Mapping, 1994, (5): 30-33.
[2] 谢良珍. 地学专题图地理底图的编绘[J]. 第四纪研究, 1993(3):260-267.
[2] Xie L Z. Compling the basic map of geography for the geoscience maps[J]. Quaternary Sciences, 1999(3): 260-267.
[3] 张宇婷. 基于多源数据的专题海图底图工艺方法研究[J]. 科学与信息化, 2020(5):2-4.
[3] Zhang Y T. Research on process method of thematic chart base chart based on multi-source data[J]. Education & Informatization, 2020(5): 2-4.
[4] Chen X, Cai Z, Li Y, et al. Application of automatic thematic mapping system driven by model (Artical)[J]. Journal of Geomatics, 2019, 44(2): 57-60.
[5] Paulo R, Guillaume T, Pia B. A change of theme:The role of generalization in thematic mapping[J]. ISPRS International Journal of GeoInformation, 2020, 9(6): 371.
[6] Bogdanova M D, Gerasimova M, Snytko V. Traditional approaches and new ideas of Maria Glazovskaya in thematic mapping[J]. Geodezia es Kartografia, 2019, 80(5): 54-62.
[7] 温珍河, 张训华, 杨金玉, 等. 中国海域1:100万地质地球物理MapGIS制图[J]. 地球信息科学学报, 2011, 13(6):750-757.
doi: 10.3724/SP.J.1047.2011.00750
[7] Wen Z H, Zhang X H, Yang J Y, et al. Digital compilation of 1:1 000 000 geological and geophysical map series of China and adjacent regions on MapGIS platform[J]. Geo-Information Science, 2011, 13(6): 750-757.
doi: 10.3724/SP.J.1047.2011.00750
[8] 杨星辰, 叶培盛, 蔡茂堂, 等. 数字地质填图野外手图地理底图制作方法[J]. 地质力学学报, 2017, 23(3):333-338.
[8] Yang X C, Ye P S, Cai M T, et al. Methods for the production of field free-hand maps and geographic basemaps in digital geological mapping[J]. Journal of Geomechanics, 2017, 23(3): 333-338.
[9] 武丽丽, 江南, 姜鹏远, 等. 浅析专题地图中的底图数据处理方法:以大比例尺陆地交通图为例[J]. 测绘与空间地理信息, 2011, 34(6):251-254.
[9] Wu L L, Jiang N, Jiang P Y, et al. The basic geographic data processing methods of thematic map—Taking large-scale land transport map as an example[J]. Geomatics & Spatial Information Technology, 2011, 34(6): 251-254.
[10] Bottero M C, Polo P l, Taddia G, et al. A geodatabase for supporting planning and management of mining activities: The case of Piedmont Region[J]. Environmental Earth Sciences, 2020, 79(4): 1-12.
doi: 10.1007/s12665-019-8746-6
[11] Charlotte E G, Rama M P, Paul J V, et al. The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability[J]. Earthquake Spectra, 2020, 36(3): 1549-1569.
doi: 10.1177/8755293019899952
[12] Kalaf A, Ai S H, Hatem L, et al. Building archaeology geodatabase in Iraq using GIS[J]. MATEC Web of Conferences, 2018, 162: 3-23.
[13] 高佳. 基于GEODATABASE的矿区地质灾害数据库的设计[J]. 西安科技大学学报, 2014, 34(6):748-753.
[13] Gao J. Design of database for geological disasters in mining area based on Geodatabase[J]. Journal of Xi’an University of Science and Technology, 2014, 34(6): 748-753.
[14] 徐斌, 张艳. 地下水化学类型区分的GIS空间分析模型[J]. 武汉大学学报:信息科学版, 2019, 44(6):866-874.
[14] Xu B, Zhang Y. GIS-Based spatial analysis model for regionalization of groundwater Hydrochemical type[J]. Geomatics and Information Science of Wuhan University: Information Science Edition, 2019, 44(6): 866-874.
[15] 金鑫, 董少春, 王晓琪, 等. 基于ArcGIS Geodatabase的浙江良渚古城遗址空间数据库的设计与实现[J]. 南京大学学报:自然科学版, 2018, 54(1):163-175.
[15] Jin X, Dong S C, Wang X Q, et al. Design and implement of a spatial database based on ArcGIS Geodatabase for archaeological sites in Liangzhu ancient city, Zhejiang Province[J]. Journal of Nanjing University:Natural Science, 2018, 54(1): 163-175.
[16] Wang J H, Li F P, Wang J, et al. Spatial query and analysis of tailings management based on GIS[J]. Engineering,ICISE2010 Proceedings, 2010, 3343(1): 4033-4035.
[17] 随欣欣, 眭素文. 基于MapGIS和ArcGIS的遥感解译成果图件数据库设计与实现[J]. 国土资源遥感, 2018, 30(4):218-224.
[17] Sui X X, Sui S W. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[18] Reddy G P O. Spatial data management,analysis,and modeling in GIS: Principles and applications[J]. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 2018, 7: 27-142.
[19] 王海, 李瑞敏. 缓冲区分析方法在事故多发点鉴别的应用研究[J]. 公路工程, 2016, 41(1):103-107.
[19] Wang H, Li R M. Buffer analysis method in the identification of the accident black point application research[J]. Highway Engineering, 2016, 41(1): 103-107.
[20] Kohei O, Keiichi O. Sketch map analysis using GIS buffer operation[J]. Lecture Notes in Computer Science, 2005, 3343(1): 227-244.
[21] 杨玲羽, 付敖云. QC7.5-17-2008 航空物探数字制图与印刷技术规定[S]. 中国国土资源航空物探遥感中心, 2008.
[21] Yang L Y, Fu A Y. QC7.5-17-2008 Technical specification for digital mapping andprinting of airborne geophysical prospecting[S]. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, 2008.
[1] 李秋燕, 张一鹤, 魏明辉, 贺鹏飞. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.
[2] 金久强, 于长春, 石磊, 徐明, 张京卯, 郭亮, 蒋久明. 国外航空物探系统集成技术回顾(2015~2020)[J]. 物探与化探, 2022, 46(2): 285-295.
[3] 李筱, 佟晶, 张婉, 姚国涛, 张玄杰. 航空地球物理勘探在南极调查中的应用[J]. 物探与化探, 2022, 46(1): 12-21.
[4] 张伟, 邱崇涛, 谢明宏, 赵丛. 利用Python自动化生成地质解释图件[J]. 物探与化探, 2021, 45(1): 186-191.
[5] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[6] 冯磊, 周伟, 陈瑶, 李文吉. 航空物探工作程度图批量定制技术研究[J]. 物探与化探, 2019, 43(1): 153-160.
[7] 杨金政, 邱崇涛, 陈鹏. 基于SVG格式进行MapGIS图形转换[J]. 物探与化探, 2018, 42(5): 1069-1075.
[8] 杜辉, 耿涛, 刘生荣, 白运. 基于ArcGIS的地物化成果各坐标系统向CGCS2000坐标转换研究[J]. 物探与化探, 2018, 42(5): 1076-1080.
[9] 崔志强. 高精度航空物探在重要成矿带资源调查中的应用[J]. 物探与化探, 2018, 42(1): 38-49.
[10] 肖都, 李军峰. 一种用于航空物探测量的无人机路径规划方法[J]. 物探与化探, 2017, 41(3): 564-569.
[11] 贺海扬, 沈正新, 安政伟, 邱崇涛. 基于MapGIS实现图件自动裁剪与图例生成[J]. 物探与化探, 2017, 41(3): 550-555.
[12] 高维, 舒晴, 屈进红, 米耀辉. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016, 40(6): 1116-1124.
[13] 龚红蕾, 张仲猛, 师淑娟, 刘俊长, 张亚东. 基于MapGIS组件技术批量绘制多元素化探剖面图[J]. 物探与化探, 2016, 40(6): 1222-1226.
[14] 苏永红. 基于MapGIS的极值无偏地球化学等值线图生成方法[J]. 物探与化探, 2016, 40(5): 1026-1029.
[15] 张固成, 傅杨荣, 郭跃品, 马荣林, 张家友. 基于MapGIS的Label点法农业地质样点布置方法[J]. 物探与化探, 2016, 40(3): 614-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com