Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 228-236    DOI: 10.11720/wtyht.2024.1136
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
大气降尘对土壤主要环境元素的累积影响及评价——以山东省高密市为例
姜冰1,2,3(), 张德明1, 刘阳1
1.山东省第四地质矿产勘查院,山东 潍坊 261021
2.山东省地质矿产勘查开发局 海岸带地质环境保护重点实验室,山东 潍坊 261021
3.山东科技大学 地球科学与工程学院,山东 青岛 266590
Cumulative effects of atmospheric dust fall on major environmental elements in soils and their evaluation: A case study of Gaomi City, Shandong Province, China
JIANG Bing1,2,3(), ZHANG De-Ming1, LIU Yang1
1. Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
2. Key Laboratory of Coastal Zone Geological Environment Protection of Shandong Geology and Mineral Exploration and Development Bureau, Weifang 261021, China
3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
全文: PDF(5160 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为研究山东省高密市大气降尘主要环境元素的污染分布特征,探究其对表生环境中土壤的影响效应,对高密市大气降尘进行了系统采集、测试,取得了Cu、Pb、Zn、Ni、Cr、Cd、As、Hg、Se等9种环境元素测试数据,计算其年沉降通量、年增量,模拟了各元素达到限定值所需的最小年沉降通量,并对污染水平进行了评价。结果表明,大气降尘中各元素含量平均值均高于土壤背景值,表现为不同程度的富集。年沉降通量Cu与Pb呈显著正相关,Zn、Ni、Cr、Cd、As、Hg多呈现两两正相关,Se与其他元素相关性不显著,相关性越强则同源性越高。大气降尘是土壤主要环境元素的一个输入端元,其导致的表层土壤各元素年增速率为0.03% ~ 0.52%,多年后Cd最接近土壤限定值。地累积指数评价显示,Ni、As、Cr为无污染至轻度污染,Se以重度污染为主,Cd、Zn为中度污染至重度污染,Hg、Cu、Pb以轻度污染至中度污染为主,污染程度排序为Se>Cd>Zn>Hg>Cu>Pb>Ni>As>Cr。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜冰
张德明
刘阳
关键词 大气降尘环境元素年沉降通量年增量地累积指数    
Abstract

This study aims to investigate the pollution distribution of major environmental elements of atmospheric dust fall in Gaomi City, Shandong Province, as well as its effects on soils in a supergene environment. Hence, this study systematically collected and tested the atmospheric dust fall from Gaomi City, obtaining the testing data of nine environmental elements, including Cu, Pb, Zn, Ni, Cr, Cd, As, Hg, and Se. Furthermore, this study calculated the annual sediment fluxes and annual increments of these elements, simulated the minimum annual sediment fluxes for them to reach limit values, and evaluated their pollution levels. The results show that the average contents of various elements in atmospheric dust fall all exceeded their soil background values, exhibiting different degrees of enrichment. In terms of annual sediment fluxes, Cu was significantly positively correlated with Pb, while Zn, Ni, Cr, Cd, As, and Hg were mostly positively correlated in pairs, and Se showed a non-significant correlation with other elements. A higher correlation suggests a higher homology. Atmospheric dust fall, serving as an input end member of major environmental elements in soils, resulted in annual growth rates of various elements in topsoils ranging from 0.03%~0.52%. Cd would be the closest to its soil limit value over a few years. As revealed by geoaccumulation index-based evaluation, Ni, As, and Cr exhibited non-pollution to slight pollution, Se primarily manifested heavy pollution, Cd and Zn displayed moderate to heavy pollution, and Hg, Cu, and Pb mainly showed slight to moderate pollution, corresponding to a pollution order of Se>Cd>Zn>Hg>Cu>Pb>Ni>As>Cr.

Key wordsatmospheric dust fall    environmental element    annual sediment flux    annual increment    geoaccumulation index
收稿日期: 2023-03-24      修回日期: 2023-06-09      出版日期: 2024-02-20
ZTFLH:  X513  
基金资助:山东省地质矿产勘查开发局地质勘查引领示范和科技创新项目(KC202207)
作者简介: 姜冰(1984-),男,高级工程师,主要从事生态环境地球化学研究工作。Email:jbing08@163.com
引用本文:   
姜冰, 张德明, 刘阳. 大气降尘对土壤主要环境元素的累积影响及评价——以山东省高密市为例[J]. 物探与化探, 2024, 48(1): 228-236.
JIANG Bing, ZHANG De-Ming, LIU Yang. Cumulative effects of atmospheric dust fall on major environmental elements in soils and their evaluation: A case study of Gaomi City, Shandong Province, China. Geophysical and Geochemical Exploration, 2024, 48(1): 228-236.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1136      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/228
Fig.1  研究区采样点位
元素 最大值 最小值 平均值 标准差 变异
系数
土壤背
景值[29]
Cu 296.2 30.7 67.4 59.4 0.88 17.7
Pb 899.4 21.3 91.8 153.9 1.68 23.67
Zn 746.5 157.2 374.5 188.3 0.50 45.29
Ni 53.4 14.8 32.6 9.4 0.29 21.9
Cr 153.5 19.3 64.7 38.5 0.60 59.62
Cd 1.95 0.33 1.22 0.42 0.34 0.10
As 20.30 2.58 10.33 3.44 0.33 8.75
Hg 0.180 0.028 0.098 0.033 0.34 0.0266
Se 5.41 0.08 3.22 1.22 0.38 0.17
Table 1  大气降尘中主要环境元素统计参数
元素 最大值 最小值 平均值 标准差 变异系数
Cu 26.66 2.04 5.67 4.77 0.84
Pb 91.23 2.44 8.08 15.76 1.95
Zn 100.05 10.49 33.85 21.11 0.62
Ni 5.41 1.63 2.78 1.00 0.36
Cr 14.98 1.86 5.67 3.55 0.63
Cd 0.15 0.04 0.10 0.02 0.20
As 3.20 0.30 0.91 0.54 0.59
Hg 0.0174 0.0045 0.0084 0.0035 0.42
Se 0.44 0.00 0.27 0.08 0.30
Table 2  主要环境元素年沉降通量
元素 主因子
F1 F2 F3
Ni 0.919 0.072 0.168
As 0.877 0.054 -0.193
Zn 0.760 -0.019 0.139
Cd 0.749 -0.028 0.164
Cr 0.705 -0.012 0.285
Hg 0.627 0.471 0.199
Pb -0.097 0.956 0.157
Cu 0.093 0.935 -0.148
Se 0.225 0.031 0.952
特征根 3.709 2.021 1.187
方差/% 41.210 22.457 13.184
贡献率/% 41.210 63.667 76.851
Table 3  主因子旋转载荷
元素 Cu Pb Zn Ni Cr Cd As Hg Se
Cu 1
Pb 0.840** 1
Zn 0.087 -0.063 1
Ni 0.100 0.014 0.641** 1
Cr 0.021 -0.001 0.427* 0.720** 1
Cd 0.108 -0.103 0.629** 0.652** 0.387* 1
As 0.114 -0.053 0.528** 0.724** 0.548** 0.531** 1
Hg 0.342 0.360 0.410* 0.672** 0.404* 0.286 0.577** 1
Se -0.079 0.160 0.300 0.328 0.356 0.333 0.078 0.340 1
Table 4  主要环境元素年沉降通量相关性分析
Fig.2  主要环境元素年沉降通量空间分布
元素 最大值 最小值 平均值 标准差 变异
系数
年均增长
速率/%
Cu 104.13 7.98 22.15 18.63 0.84 0.13
Pb 356.39 9.52 31.55 61.56 1.95 0.13
Zn 390.81 40.96 132.21 82.46 0.62 0.29
Ni 21.15 6.38 10.87 3.90 0.36 0.05
Cr 58.53 7.27 22.15 13.87 0.63 0.04
Cd 0.57 0.15 0.39 0.09 0.23 0.39
As 12.52 1.15 3.57 2.09 0.59 0.04
Hg 0.0678 0.0175 0.0329 0.0137 0.42 0.12
Se 1.74 0.02 1.04 0.30 0.29 0.61
Table 5  大气降尘导致的表层土壤主要环境元素年增量
元素
土壤背景值

限定值
当前年沉
降通量
所需最小年沉
降通量(10年)
10-6 10-6 mg·(m2·a)-1 mg·(m2·a)-1
Cu 17.7 50.0 5.67 827.0
Pb 23.67 70.00 8.08 1186.00
Zn 45.29 200.00 33.85 3961.00
Ni 21.9 60.0 2.78 975.0
Cr 59.62 150.00 5.67 2314.00
Cd 0.10 0.30 0.10 5.10
As 8.75 30.00 0.91 544.00
Hg 0.0266 1.3000 0.0084 32.6000
Se 0.17 3.00 0.266 72.40
Table 6  达到限定值所需的最小年沉降通量及其与当前年沉降通量的对比
Fig.3  主要环境元素地累积指数箱式图
Fig.4  主要环境元素地累积指数空间分布
[1] 庞绪贵, 王晓梅, 代杰瑞, 等. 济南市大气降尘地球化学特征及污染端元研究[J]. 中国地质, 2014, 41(1):285-293.
[1] Pang X G, Wang X M, Dai J R, et al. Geochemical characteristics and pollution sources identification of the atmospheric dust-fall in Jinan city[J]. Geology in China, 2014, 41(1):285-293.
[2] Žibret G. Influences of coal mines,metallurgical plants,urbanization and lithology on the elemental composition of street dust[J]. Environmental Geochemistry and Health, 2019, 41(3):1489-1505.
doi: 10.1007/s10653-018-0228-3
[3] 李晋昌, 董治宝. 大气降尘研究进展及展望[J]. 干旱区资源与环境, 2010, 24(2):102-109.
[3] Li J C, Dong Z B. Research progress and prospect of dustfall research[J]. Journal of Arid Land Resources and Environment, 2010, 24(2):102-109.
[4] 姚瑶, 张丽, 施杨. 连云港市大气降尘时空分布特征[J]. 环境监控与预警, 2021, 13(1):56-60.
[4] Yao Y, Zhang L, Shi Y. Temporal and spatial distribution characteristics of atmospheric dust fall in Lianyungang City[J]. Environmental Monitoring and Forewarning, 2021, 13(1):56-60.
[5] 陈莹, 赵剑强, 汤丹娜, 等. 西安市大气降尘重金属污染特征与生态风险[J]. 干旱区资源与环境, 2017, 31(6):154-159.
[5] Chen Y, Zhao J Q, Tang D N, et al. Heavy metal pollution characteristics and ecological risk of dust fall in Xi'an City[J]. Journal of Arid Land Resources and Environment, 2017, 31(6):154-159.
[6] Zhao H, Xia B, Fan C, et al. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine,Southern China[J]. Science of the Total Environment, 2012,417-418:45-54.
[7] 任玉成, 阮丽, 李欣, 等. 基于粒度方法的大气降尘对浙江省新嵊盆地土壤的物源输入研究[J]. 土壤, 2021, 53(4):865-873.
[7] Ren Y C, Ruan L, Li X, et al. Atmospheric dust input to soils in Xinsheng Basin,Zhejiang Province based on grain size analysis[J]. Soils, 2021, 53(4):865-873.
[8] 赵亚伟. 邯郸市大气干湿沉降特征及对水体影响研究[D]. 天津: 河北工程大学, 2019.
[8] Zhao Y W. Study on characteristics of atmospheric dry and wet deposition and its influence on water body in Handan[D]. Tianjin: Hebei University of Engineering, 2019.
[9] 戴青云, 贺前锋, 刘代欢, 等. 大气沉降重金属污染特征及生态风险研究进展[J]. 环境科学与技术, 2018, 41(3):56-64.
[9] Dai Q Y, He Q F, Liu D H, et al. Progress in research on heavy metals in atmospheric deposition:Pollution characteristics and ecological risk assessment[J]. Environmental Science & Technology, 2018, 41(3):56-64.
[10] Chen B, Stein A F, Maldonado P G, et al. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model[J]. Atmospheric Environment, 2013, 71(2):234-244.
doi: 10.1016/j.atmosenv.2013.02.013
[11] 王鸿钰, 俞炳琨, 李阳, 等. 降尘对乌鲁木齐市地产萝卜中Pb含量的影响[J]. 干旱区资源与环境, 2021, 35(10):128-134.
[11] Wang H Y, Yu B K, Li Y, et al. Effect of dustfall on Pb content in radish produced in Urumqi[J]. Journal of Arid Land Resources and Environment, 2021, 35(10):128-134.
[12] 宋鹏程, 陆书玉, 魏永杰, 等. 上海市大气颗粒物生物毒性及二噁英呼吸暴露风险评价[J]. 中国环境科学, 2018, 38(5):1961-1969.
[12] Song P C, Lu S Y, Wei Y J, et al. Biotoxicity effects and respiratory risk assessment of PCDD/Fs exposured to atmospheric particulates in Shanghai[J]. China Environmental Science, 2018, 38(5):1961-1969.
[13] Rachwał M, Wawer M, Jabłońska M, et al. Geochemical and mineralogical characteristics of airborne particulate matter in relation to human health risk[J]. Minerals, 2020, 10(10):866-866.
doi: 10.3390/min10100866
[14] Salim Akhter M, Madany I M. Heavy metals in street and house dust in Bahrain[J]. Water,Air,and Soil Pollution, 1993, 66(1/2):111-119.
doi: 10.1007/BF00477063
[15] 赵西强, 庞绪贵, 王增辉, 等. 利用原子荧光光谱—电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征[J]. 岩矿测试, 2015, 34(2):245-251.
[15] Zhao X Q, Pang X G, Wang Z H, et al. Study on the characteristics of heavy metal contents and annual fluxes of atmospheric dry and wet deposition in Jinan City using AFS and ICP-MS[J]. Rock and Mineral Analysis, 2015, 34(2):245-251.
[16] 栾慧君, 塞古, 徐蕾, 等. 徐州北郊大气降尘重金属污染特征与风险评价[J]. 中国环境科学, 2020, 40(11):4679-4687.
[16] Luan H J, Mohamed-Conde S, Xu L, et al. Characteristics and risk assessment of heavy metals from atmospheric deposition in northern suburban of Xuzhou[J]. China Environmental Science, 2020, 40(11):4679-4687.
[17] 张夏, 刘斌, 肖柏林, 等. 重庆主城大气降尘中重金属污染特征及评价[J]. 环境科学, 2020, 41(12):5288-5294.
[17] Zhang X, Liu B, Xiao B L, et al. Pollution characteristics and assessment of heavy metals in atmospheric deposition in core urban areas,Chongqing[J]. Environmental Science, 2020, 41(12):5288-5294.
[18] 杨新明, 钟雅琪, 李国锋, 等. 典型工业城市大气降尘中重金属分布特征及其来源解析——以济南市为例[J]. 环境化学, 2022, 41(1):94-103.
[18] Yang X M, Zhong Y Q, Li G F, et al. Distribution characteristic and source apportionment of heavy metals in atmospheric dust in a typical industrial city—A case study of Jinan[J]. Environmental Chemistry, 2022, 41(1):94-103.
[19] Ma W C, Tai L Y, Qiao Z, et al. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator:A case study in North China[J]. Science of the Total Environment, 2018,631-632:348-357.
[20] 赵成义. 土壤硒的生物有效性研究[J]. 中国环境科学, 2004, 24(2):57-60.
[20] Zhao C Y. Studies on the bioavailability of soil selenium[J]. China Environmental Science, 2004, 24(2):57-60.
[21] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3):319-336.
[21] Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3):319-336.
[22] 柴华, 何念鹏. 中国土壤容重特征及其对区域碳贮量估算的意义[J]. 生态学报, 2016, 36(13):3903-3910.
[22] Chai H, He N P. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale[J]. Acta Ecologica Sinica, 2016, 36(13):3903-3910.
[23] Pan H Y, Lu X W, Lei K. A comprehensive analysis of heavy metals in urban road dust of Xi'an,China:Contamination,source apportionment and spatial distribution[J]. Science of the Total Environment, 2017, 609:1361-1369.
doi: 10.1016/j.scitotenv.2017.08.004
[24] 李萍, 薛粟尹, 王胜利, 等. 兰州市大气降尘重金属污染评价及健康风险评价[J]. 环境科学, 2014, 35(3):1021-1028.
[24] Li P, Xue S Y, Wang S L, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou[J]. Environmental Science, 2014, 35(3):1021-1028.
[25] 韦炳干, 虞江萍, 曹志强, 等. 唐山市设施菜地土壤重金属累积与有效态含量的影响特征[J]. 环境化学, 2021, 40(9):2649-2657.
[25] Wei B G, Yu J P, Cao Z Q, et al. Factors impact on accumulation and availability of heavy metals in greenhouse vegetable soil from Tangshan City[J]. Environmental Chemistry, 2021, 40(9):2649-2657.
[26] 范拴喜, 甘卓亭, 李美娟, 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010, 26(17):310-315.
[26] Fan S X, Gan Z T, Li M J, et al. Progress of assessment methods of heavy metal pollution in soil[J]. Chinese Agricultural Science Bulletin, 2010, 26(17):310-315.
[27] 师荣光, 蔡彦明, 郑向群, 等. 天津郊区农田降雨径流重金属的污染特征及来源分析[J]. 干旱区资源与环境, 2011, 25(5):213-217.
[27] Shi R G, Cai Y M, Zheng X Q, et al. Contamination characteristics and source analyses on heavy metals in farmland runoff of the Tianjin suburban areas[J]. Journal of Arid Land Resources and Environment, 2011, 25(5):213-217.
[28] 管孝艳, 王少丽, 高占义, 等. 盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J]. 生态学报, 2012, 32(4):198-206.
[28] Guan X Y, Wang S L, Gao Z Y, et al. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district[J]. Acta Ecologica Sinica, 2012, 32(4):198-206.
doi: 10.5846/stxb
[29] 刘阳. 高密市土壤地球化学背景值研究[J]. 上海国土资源, 2019, 40(4):89-92.
[29] Liu Y. Study on geochemical background value of soil in Gaomi city[J]. Shanghai Land & Resources, 2019, 40(4):89-92.
[30] 姜冰, 王松涛, 孙增兵, 等. 基于不同参比值的土壤重金属潜在生态风险评价[J]. 科学技术与工程, 2022, 22(7):2964-2971.
[30] Jiang B, Wang S T, Sun Z B, et al. Potential ecological risk assessment of soil heavy metals based on different reference ratios[J]. Science Technology and Engineering, 2022, 22(7):2964-2971.
[31] 赵西强, 王增辉, 王存龙, 等. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016, 40(1):154-159.
[31] Zhao X Q, Wang Z H, Wang C L, et al. Geochemical characteristics and pollution assessment of near-surface atmospheric dust in Jinan[J]. Geophysical and Geochemical Exploration, 2016, 40(1):154-159.
[32] 孙厚云, 吴丁丁, 毛启贵, 等. 新疆东天山某铜矿区土壤重金属污染与生态风险评价[J]. 环境化学, 2019, 38(12):2690-2699.
[32] Sun H Y, Wu D D, Mao Q G, et al. Soil heavy metal pollution and ecological risk assessment in a copper mining area in East Tianshan,Xinjiang[J]. Environmental Chemistry, 2019, 38(12):2690-2699.
[33] 闫晓露, 郑欢, 赵烜杭, 等. 辽东湾北部河口区土壤重金属污染源识别及健康风险评价[J]. 环境科学学报, 2020, 40(8):3028-3039.
[33] Yan X L, Zheng H, Zhao X H, et al. Source identification and health risk assessment of soil heavy metal in the estuary of Northern Liaodong Bay,China[J]. Acta Scientiae Circumstantiae, 2020, 40(8):3028-3039.
[34] 刘杰, 高敏, 梁俊宁, 等. 陕西省某工业园区春季大气降尘重金属污染特征及评价[J]. 环境科学研究, 2019, 32(7):1195-1203.
[34] Liu J, Gao M, Liang J N, et al. Characteristics and assessment of heavy metal pollution in spring atmospheric dust of an industrial park in Shanxi Province[J]. Research of Environmental Sciences, 2019, 32(7):1195-1203.
[35] 卢红玲, 肖光辉, 刘青山, 等. 土壤镉污染现状及其治理措施研究进展[J]. 南方农业学报, 2014, 45(11):1986-1993.
[35] Lu H L, Xiao G H, Liu Q S, et al. Advances in soil Cd pollution and solution measures[J]. Journal of Southern Agriculture, 2014, 45(11):1986-1993.
[36] 陆平, 赵雪艳, 殷宝辉, 等. 临沂市PM2.5和PM10中元素分布特征及来源解析[J]. 环境科学, 2020, 41(5):2036-2043.
[36] Lu P, Zhao X Y, Yin B H, et al. Distribution characteristics and source apportionment of elements bonded with PM2.5 and PM10 in Linyi[J]. Environmental Science, 2020, 41(5):2036-2043.
doi: 10.1021/es0616175
[37] 黄子茵, 管东生, 王刚. 海南岛社会经济发展对红树林表层土壤重金属污染的影响[J]. 海洋环境科学, 2020, 39(6):831-837.
[37] Huang Z Y, Guan D S, Wang G. Heavy metal contents of mangrove surface soils affected by the social and economic development in Hainan Island[J]. Marine Environmental Science, 2020, 39(6):831-837.
[38] 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3):713-725.
doi: 10.11821/dlxb202103015
[38] Lyu J S. Source apportionment and spatial prediction of heavy metals in soils of Yantai coastal zone[J]. Acta Geographica Sinica, 2021, 76(3):713-725.
doi: 10.11821/dlxb202103015
[1] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[2] 刘志坚, 张琇. 银川市大气降尘重金属污染状况评价[J]. 物探与化探, 2017, 41(2): 316-321.
[3] 赵西强, 王增辉, 王存龙, 代杰瑞, 刘华峰, 季顺乐. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016, 40(1): 154-159.
[4] 李延生. 黑龙江省松嫩平原南部大气降尘地球化学特征[J]. 物探与化探, 2011, 35(4): 536-540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com