Please wait a minute...
E-mail Alert Rss
 
物探与化探  2014, Vol. 38 Issue (6): 1097-1106    DOI: 10.11720/wtyht.2014.6.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
土壤重金属生物有效性研究进展
周国华
中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
Recent progress in the study of heavy metal bioavailability in soil
ZHOU Guo-Hua
Institute of Geophysical and Geochemical Exploration, Langfang 065000, China
全文: PDF(556 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 土壤重金属污染具有巨大环境风险。笔者围绕土壤重金属元素生物有效性(可给性)概念、元素形态与有效性影响因素、有效态(可给态)实验技术,综述了国内外研究现状。土壤金属元素形态和生物有效性取决于其地球化学行为、元素成因来源、土壤理化条件(pH值、有机质、粘土矿物与化学活性矿物、土壤粒级组成等)以及植物根际效应等。选择性单步提取和连续提取是检测土壤元素形态、有效态的有效和可行方法。针对手—口是土壤铅等污染物在儿童群体暴露的重要途径,发展了生物可给态体外试验方法。土壤污染物生物有效性和可给性已成为土壤污染风险评价的重要指标参数,实验成果也为土壤污染修复提供了重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The contamination of heavy metals in soil constitutes a serious environmental risk. This paper discusses the concept of bioavailability/accessibility of heavy metals and the affecting factors, presents the progress in the study of experimental methods of selective extraction, and indicates the data application and research direction. The speciation and bioavailability of heavy metals in soil depend on elemental geochemical behavior, source of contaminants, physico-chemical condition of soil, rhizosphere enhancement and some other factors. Single and sequential selective extraction is the effective and operational methods to reflect the speciation and bioavailability of heavy metals in soil. As hand-to-mouth activity is the important pathway for soil Pb exposure to children, in vitro digestion methods have been developed to evaluate the bioaccessibility of heavy metals. Bioavailability and bioaccessibility of soil contaminants seem to be the key parameters for risk assessment. The results of selective extraction also provide the basis for contaminated soil remediation.
收稿日期: 2014-03-04      出版日期: 2014-12-10
:  P632  
基金资助:中国地质大调查项目(12120113002400)
作者简介: 周国华(1964-),博士,教授级高工,勘查地球化学专业。E-mail:zhouguohua@igge.cn
引用本文:   
周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.
ZHOU Guo-Hua. Recent progress in the study of heavy metal bioavailability in soil. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2014.6.01      或      https://www.wutanyuhuatan.com/CN/Y2014/V38/I6/1097
[1] Shaw A J.Heavy metal tolerance in plants: evolutionary aspects[M].Boca Raton, FL:CRC Press, 1990.
[2] Madhavan S, Rosenman K D, Shehata T.Lead in soil: recommended maximum permissible levels[J].Environmental Research, 1989, 49:136-142.
[3] Kramer B K,Ryan P B.Soxhlet and microwave extraction in determining the bioaccessibility of pesticides from soil and model solids//Proceedings of the 2000 Conference on Hazardous Waste Research, 2000:196-210.
[4] Ruby M V, Davis A, Schoof R, et al.Estimation of lead and arsenic bioavaibility using a physiologically based extraction test[J].Environmental Science and Technology, 1996, 30 (2):422-430.
[5] Ruby M V, Schoof R, Brattin W, et al.Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J].Environmental Science and Technology, 1999, 33:3697-3705.
[6] Naidu R, Bolan N S, Megharaj M, et al.Chemical bioavailability in terrestrial environments//Naidu,et al.Chemical bioavailability in terrestrial environment.Amsterdam:Elsevier, 2008:1-8.
[7] Ng J C,Juhasz A,Smith E,et al.Assessing the bioavailability and bioaccessibility of metals and metalloids. Environ Sci Pollut Res[M].Berlin Heidelberg:Springer-Verlag,2013.
[8] NRC (National Research Council). Bioavailability of contaminants in soils and sediments: processes, tools and applications[M].Washington:The National Academies Press, 2003.
[9] Tongtavee N, Shiowatana J, McLaren R G, et al.Assessment of lead availability in contaminated soil using isotope dilution techniques[J].Science of the Total Environment, 2005, 348:244-256.
[10] Sterckeman T, Carignan J,Srayeddin I, et al.Availability of soil cadmium using stable and radioactive isotope dilution[J].Geoderma, 2009,153:372-378.
[11] Kabata-Pendias A.Behavioural properties of trace metals in soils[J].Applied Geochemistry,2(Suppl):1993:3-9.
[12] Moreno A M, Quintana J R, Pérez L, et al.Factors influencing lead sorption-desorption at variable added metal concentrations in Rhodoxeralfs[J].Chemosphere, 2006, 64:758-763.
[13] Sauvé S, McBride M, Hendershot W.Soil solution speciation of lead(II): effects of organic matter and pH[J].Soil Science Society of America Journal, 1998, 62:618-621.
[14] Alloway B J.Chapter 15: Bioavailability of Elements in Soil//Selinus O,et al.Essentials of Medical Geology: Revised Edition.Springer Science & Business Media Dordrecht, 2013:351-373.
[15] Jiang H,Li T Q,Han X,et al.Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J].Environmental Monitoring and Assessment, 2012, 184:6325-6335.
[16] Wang B L, Xie Z M, Chen J J,et al.Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J].Journal of Environmental Sciences, 2008, 20:1109-1117.
[17] Davis A, Drexler J W, Ruby M V, et al.Micromineralogy of mine waste in relation to lead bioavaibility from the Butte, Montana[J].Environmental Science and Technology, 1993, 27 (7):1415-1425.
[18] Magalhaes M C F, Silva M C. Stability of lead (Ⅲ) arsenates[J].Monatsh Chem, 2003, 134:735-743.
[19] Gurel A.Adsorption characteristics of heavy metals in soil zones developed on spilite[J].Environmental Geology, 2006, 51:333-340.
[20] Vega F A, Covelo E F, Andrade M L.Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics[J].Journal of Colloid and Interface Science, 2006, 298:582-592.
[21] Yang J Y, Yang X E, He Z L, et al.Effects of pH, organic acids, and inorganic ions on lead desorption from soils[J].Environmental Pollution, 2006, 143:9-15.
[22] Zhang M, Alva A K, Li Y C, et al.Chemical association of Cu, Zn, Mn, and Pb in selected sandy citrus soils[J].Journal of Soil Science, 1997, 162:181-188.
[23] Atanassova I.Competitive effect of copper, zinc, cadmium and nickel on ion adsorption and desorption by soil clays[J].Water Air Soil Pollution, 1999, 113:115-125.
[24] Pokrovsky O S, Probst A, Leviel E, et al. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration[J].Journal of Hazardous Materials, 2012, 199-200:358-366.
[25] Shaheen S M.Sorption and lability of cadmium and lead in different soils from Egypt and Greece[J].Geoderma, 2009, 153: 61-68.
[26] Rieuwerts J S, Farago M, Cikrt M, et al.Differences in lead bioavailability between a smelting and a mining area[J].Water, Air and Soil Pollution, 2000, 122: 203-229.
[27] Romero F M,Villalobos M,Aguirre R,et al.Solid-Phase Control on Lead Bioaccessibility in Smelter-Impacted Soils[J].Archives of Environmental Contamination and Toxicology, 2008, 55:566-575.
[28] Kabata-Pendias A, Pendias H.Trace Elements in Soils and Plants (2nd Edition)[M].Boca Raton:CRC Press,1992.
[29] Gray C W, McLaren R G, Roberts A H C, et al.Cadmium phytoavailability in some New Zealand soils[J].Australian Journal of Soil Research, 1999, 37:461-477.
[30] McBride M, Sauvé S, Hendershot W.Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J].Journal of Soil Science, 1997, 48:337-346.
[31] Jin C W, Zheng S J, He Y F, et al.Lead contamination in tea garden soils and factors affecting its bioavailability[J].Chemosphere, 2005, 59:1151-1159.
[32] Zeng F R, Ali S, Zhang H T, et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution, 2011, 159:84-91.
[33] Halim M, Conte P, Piccolo A.Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances[J].Chemosphere, 2003, 52:265-275.
[34] Udovic M, McBride M B.Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test[J].Journal of Hazardous Materials, 2012, 205-206:144-149.
[35] Lin Q, Chen Y X, He Y F,et al.Root-induced changes of lead availability in the rhizosphere of Oryza sativa L[J].Agriculture, Ecosystems and Environment, 2004, 104: 605-613.
[36] Murray H,Pinchin T A,Macfie S M.Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk[J].Journal of Soils and Sediments, 2011, 11:815-829.
[37] Santos S, Costa C A E, Duarte A C, et al.Influence of different organic amendments on the potential availability of metals from soil: A study on metal fractionation and extraction kinetics by EDTA[J].Chemosphere, 2010, 78: 389-396.
[38] Wang Y J, Chen J H, Cui Y X, et al.Effects of low-molecular-weight organic acids on Cu(Ⅱ) adsorption onto hydroxyapatite nanoparticles[J].Journal of Hazardous Materials, 2009, 162:1135-1140.
[39] Yu M G, Xiao H, Duan D C, et al. Influence of Tea Polyphenols Amendment to Contaminated Soil on Lead Speciation, Transformation, and Bioavailability//Functions of Natural Organic Matter in Changing Environment. Zhejiang University Press and Springer Science & Business Media Dordrecht,2013:679-684.
[40] Sarkar D, Andra S S, Saminathan S K M, et al.Chelant-aided enhancement of lead mobilization in residential soils[J].Environmental Pollution, 2008, 156:1139-1148.
[41] Sipos P, Németh T, Mohai I, et al.Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile[J].Geoderma, 2005, 124:363-374.
[42] Sonmez O, Pierzynski G M.Phosphorus and manganese oxides effects on soil lead bioaccessibility: PBET and TCLP[J].Water, Air and Soil Pollution, 2005, 166: 3-16.
[43] Gasser U, Walker W, Dahlgren R A, et al.Lead release from smelter and mine waste impacted materials under simulated gastric conditions and relation to speciation[J].Environmental Science and Technology, 1996, 30 (3):761-770.
[44] Morman S A, Plumlee G S, Smith D B.Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada[J].Applied Geochemistry, 2009, 24:1454-1463.
[45] Zhang P, Ryan J A.Formation of pyromorphite in anglesite, hydroxyapatite suspensions under varying pH conditions[J].Environmental Science and Technology, 1998, 32 (2):3318-3324.
[46] Ajmone-Marsan F, Biasioli M, Kralj T, et al.Metals in particle-size fractions of the soils of five European cities[J].Environmental Pollution, 2007, 152:73-81.
[47] Luo X S, Yu S, Li X D.Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health[J].Environmental Pollution, 2011, 159:1317-1326.
[48] Madrid F, Díaz-Barrientos E, Madrid L.Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla[J].Environmental Pollution, 2008, 156: 605-610.
[49] Qian J, Shan X Q, Wang Z J, et al.Distribution and plant availability of heavy metals in different particle-size fractions of soil[J].The Science of the Total Environment, 1996, 187:131-141.
[50] 张慧敏,王丽平,章明奎.城市土壤不同颗粒中重金属的分布及其对人体吸入重金属 的影响[J].广东微量元素科学,2007,14(7):14-19.
[51] Chaignon V, Sanchez-Neir I, Herrmann P, et al.Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area[J].Environmental Pollution, 2003, 123:229-238.
[52] Gray C W, McLaren R G, Roberts A H C.Cadmium concentrations in some New Zealand wheat grains[J].New Zealand Journal of Crop and Horticultural Science, 2001, 29: 125-136.
[53] Ingwersen J, Streck T.A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling[J].Journal of Environmental Quality, 2005, 34:1026-1035.
[54] Peijnenburg W, Baerselman R, De Groot A, et al.Quantification of metal bioavailability for Lettuse (Lactuca sativa L.) in field soils[J].Archives of Environmental Contamination and Toxicology, 2000, 39:420-430.
[55] Rao C R M,Sahuquillo A,Lopez Sanchez J F.A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials[J].Water, Air and Soil Pollution, 2008, 189:291-333.
[56] Tessier A, Campbell P G C, Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[57] Garrett R G, Hall G E M, Vaive J E, et al.A water-veach procedure for estimating bioaccessibility of elements in soils from transects across the United States and Canada[J].Applied Geochemistry, 2009, 24:1438-1453.
[58] Sanderson P,Naidu R,Bolan N.Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges[J].Environmental Science and Pollution Research,2013.DOI 10.1007/s11356-013-1918-0.
[59] Si J T, Tian B G, Wang H T, et al.Assessing availability, phytotoxicity and bioaccumulation of lead to ryegrass and millet based on 0.1 mom Ca(NO3)2 extraction[J].Journal of environmental sciences, 2006,18(5):958-953.
[60] Houba V J G, Lexmond Th M, Novozamsky I, et al.State of the art and future developments in soil analysis for bioavailability assessment[J].Science of the Total Environment, 1996, 178(1/2/3):21-28.
[61] Hani H, Gupta S.Chemical methods for the biological characterization of metal in sludge and soil.Commission of the European Communities, 1986:157-167.
[62] Deutsches Institut fur normung, Extraktion von Spurenelemente mit Ammonium-nitratlosung.Boden-Chemische Bodenuntersuchungsverfahren(Vornorm DINV 19730)[S].Berlin, Germany.1995.
[63] Jones L H P, Clement C R,Hopper M J.Lead uptake from solution by perennial ryegrass and its transport from roots to shoots[J].Plant and Soil, 1973, 38(4):610-619.
[64] Chojnacka K, Chojnacki A, Gó recka H, et al.Bioavailability of heavy metals from polluted soils to plants[J].Science of the Total Environment, 2005, 337:175-182.
[65] Chopin E I B, Alloway B J.Distribution and Mobility of Trace Elements in Soils and Vegetation Around the Mining and Smelting Areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain[J].Water, Air and Soil Pollution, 2007, 182:245-261.
[66] 万红友,周生路,赵其国.苏南经济快速发展区土壤有效态铅、镍含量影响因素及分布特征[J].农业环境科学学报,2008,27(4):1566-1573.
[67] Soil and Plant Analysis Council.Soil analysis: Handbook of Reference Methods.[M].Boca Raton: CRC Press. 2000.
[68] Villiers S D,Thiart C,Basson N C.Identification of sources of environmental lead in South Africa from surface soil geochemical maps[J].Environmental Geochemistry and Health, 2010, 32:451-459.
[69] Howard J L, Vandenbrink W J.Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption[J].Environmental Pollution , 1999, 106: 285-292.
[70] Li X D, Thornton I.Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities[J].Applied Geochemistry, 2001,16:1693-1706.
[71] Ramos L, Gonzalez M J, Hernandez L M.Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro River (Spain): relationship with levels detected in earthworms[J].Bulletin of Environmental Contamination and Toxicology, 1999, 62:301-308.
[72] Zhao K L,Liu X M,Zhang W W,et al.Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale[J].Journal of Soils and Sediments, 2011, 11:1165-1177.
[73] Rauret G, López-Sánchez J F, Sahuquillo A, et al.Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring, 1999, 1: 57-61.
[74] 张丽华,郑承松,张君诚,等.三明市铅锌矿污染土壤的重金属含量及其形态分布研究[J].三明学院学报,2008,25(2):184-187.
[75] McBride M B, Nibarger E A, Richards B K, et al.Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals[J].Soil Science, 2003, 168:29-38.
[76] Davidson C M, Urquhart G J, Ajmone-Marsan F, et al.Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure[J].Analytical Chimica Acta, 2006, 565:63-72.
[77] Zia M H, Codling E E, Scheckel K G, et al.In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: A review[J].Environmental Pollution, 2011, 159:2320-2327.
[78] 崔岩山,陈晓晨,付瑾.污染土壤中铅、砷的生物可给性研究进展[J].生态环境学报,2010, 19(2): 480-486.
[79] Rotard W, Christmann W, Knoth W, et al.Bestimmung der resorptionsverfügbaren PCDD/PCDF aus Kieselrot[J].Environmental Sciences Europe,1995, 7:3-9.
[80] Molly K, Van de Woestyne M, Verstraete W.Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem[J].Applied Microbiology and Biotechnology, 1993, 39(2):254-258.
[81] Deshommes E, Tardif R, Edwards M, et al.Experimental determination of the oral bioavailability and bioaccessibility of lead particles[J].Chemistry Central Journal, 2012, 6:138.
[82] Denys S, Caboche J, Tack K, et al.In-vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J].Environmental Science and Technology, 2012, 46:6252-6260.
[83] Schroder J L, Basta N T, Casteel S W, et al.Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J].Journal of Environmental Quality, 2004, 33:513-521.
[84] Uzu G,Sobanska S, Aliouane Y, et al.Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation[J].Environmental Pollution, 2009, 157:1178-1185.
[85] Comaschi T, Meneghini C, Businelli D, et al.XAS study of lead speciation in a central Italy calcareous soil[J].Environmental Science and Pollution Research, 2011, 18:669-676.
[86] Lasat M M.Phytoextraction of toxic metals: a review of biological mechanisms[J].Journal of Environmental Quality , 2002, 31:109-120.
[87] Wang G, Su M Y, Chen Y H, et al.Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China[J].Environmental Pollution,2006, 144: 127-135.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com