Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1530-1538    DOI: 10.11720/wtyht.2024.1554
  “高放废物处置”专栏 本期目录 | 过刊浏览 | 高级检索 |
高放废物地质处置新场候选场址地下水位异常值识别方法
吉子健1,2(), 周志超1,2, 赵敬波1,2, 季瑞利1,2, 张明1,2
1.核工业北京地质研究院 环境工程研究所,北京 100029
2.国家原子能机构高放废物地质处置创新中心,北京 100029
A method for identifying anomalous values of groundwater levels at candidate sites for the geological disposal of high-level radioactive waste
JI Zi-Jian1,2(), Zhou Zhi-Chao1,2, Zhao Jing-Bo1,2, JI Rui-Li1,2, ZHANG Ming1,2
1. Division of Environmental Engineering, Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste, Beijing 100029, China
全文: PDF(4833 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地下水动态监测为高放废物地质处置候选场址的安全评价提供了关键基础数据,但研究发现实际的监测数据中存在较多异常值,严重干扰了对动态过程的准确判断。因此,亟须建立一种高效的方法对异常值进行准确识别。本文基于局部加权回归的时间序列分解和最小协方差行列式方法构建了地下水位异常值检测组合模型,使最小协方差行列式方法可以在更独立的残差项中进行异常值检测。结果表明,构建的组合模型相较于最小协方差行列式方法的单一模型,其对异常数据具有更好的敏感性和检测精度;并进一步确定了组合模型的阈值应接近实际的异常值比例,以获取最佳的检测效果;此外,根据新场地段BSQ01、BSQ25、BS35、BS26钻孔的水位数据对组合模型的适用性进行验证,表明其能够准确识别出混淆于大量正常水位数据中的异常值,同时也适用于不同类型异常事件的检测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉子健
周志超
赵敬波
季瑞利
张明
关键词 时间序列异常检测STL分解最小协方差行列式方法高放废物地质处置    
Abstract

Dynamic groundwater monitoring provides critical foundational data for the safety assessment of candidate sites for the geological disposal of high-level radioactive waste. However, research has revealed that actual monitoring data frequently contain numerous anomalous values, severely interfering with the accurate assessment of the dynamic monitoring process. Therefore, there is an urgent need to develop an efficient method to accurately identify these anomalous values. This study built a combined model for anomalous value detection of the groundwater level using local weighted regression-based time series decomposition and the minimum covariance determinant (MCD) method. This combined model allowed the MCD method to achieve anomaly detection in more independent residuals. Results indicate that the combined model exhibited higher sensitivity and detection accuracy for anomalous data than the single MCD model. Furthermore, this study established that the threshold of the combined model should be close to the actual proportion of anomalous values to achieve optimal detection results. Besides, this study validated the applicability of the combined model using groundwater level data from boreholes BSQ01, BSQ25, BS35, and BS26 at the new site. The validation results demonstrate that the combined model can accurately identify anomalous values amidst a large volume of data on the normal groundwater level and is applicable to the detection of different types of anomalous events.

Key wordstime-series anomaly detection    STL decomposition    minimum covariance determinant (MCD) method    high-level radioactive waste    geological disposal
收稿日期: 2023-12-21      修回日期: 2024-06-25      出版日期: 2024-12-20
ZTFLH:  P641  
基金资助:铀资源探采与核遥感全国重点实验室基金项目(NKLUR-2024-QN-004);国防科工局核设施退役治理专项科研项目(科工二司〔2022〕736号);中核集团2022年基础研究项目(CNNC-JCYJ-202206)
引用本文:   
吉子健, 周志超, 赵敬波, 季瑞利, 张明. 高放废物地质处置新场候选场址地下水位异常值识别方法[J]. 物探与化探, 2024, 48(6): 1530-1538.
JI Zi-Jian, Zhou Zhi-Chao, Zhao Jing-Bo, JI Rui-Li, ZHANG Ming. A method for identifying anomalous values of groundwater levels at candidate sites for the geological disposal of high-level radioactive waste. Geophysical and Geochemical Exploration, 2024, 48(6): 1530-1538.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1554      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1530
Fig.1  新场地段周边水文地质
Fig.2  新场地段内地下水位监测钻孔位置
Fig.3  钻孔地下水位监测数据及异常值分布
Fig.4  STL分解和最小协方差行列式方法组合的异常检测流程
Fig.5  模型性能随模型阈值变化
Fig.6  BS35号孔组合模型与单一模型检测效果
Fig.7  BS26号孔组合模型与单一模型检测效果
Fig.8  BSQ01号孔组合模型与单一模型检测效果
Fig.9  BSQ25号孔组合模型与单一模型检测效果
钻孔号 单一模型 组合模型
精确率 召回率 F1 精确率 召回率 F1
BS26 0.71 0.76 0.74 0.85 0.92 0.88
BS35 0.11 0.08 0.09 0.89 0.71 0.79
BSQ01 0.50 0.50 0.50 0.78 0.64 0.71
BSQ25 0.64 0.54 0.58 0.82 0.69 0.75
Table 1  场址周边钻孔地下水位异常值检测评价指标得分
[1] 郭永海, 王驹, 金远新. 世界高放废物地质处置库选址研究概况及国内进展[J]. 地学前缘, 2001, 8(2):327-332.
[1] Guo Y H, Wang J, Jin Y X. The general situation of geological disposal repository siting in the world and research progress in China[J]. Earth Science Frontiers, 2001, 8(2):327-332.
[2] Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning,site selection,site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.
[3] Calderwood A J, Pauloo R A, Yoder A M, et al. Low-cost,open source wireless sensor network for real-time,scalable groundwater monitoring[J]. Water, 2020, 12(4):1066.
[4] Drage J, Kennedy G. Building a low-cost,internet-of-things,real-time groundwater level monitoring network[J]. Groundwater Monitoring & Remediation, 2020, 40(4):67-73.
[5] Muharemi F, Logofătu D, Leon F. Machine learning approaches for anomaly detection of water quality on a real-world data set[J]. Journal of Information and Telecommunication, 2019, 3(3):294-307.
[6] Pang G S, Shen C H, Cao L B, et al. Deep learning for anomaly detection:A review[J]. ACM Computing Surveys, 2021, 54(2):1-38.
[7] Schmidl S, Wenig P, Papenbrock T. Anomaly detection in time series:A comprehensive evaluation[J]. Proceedings of the VLDB Endowment, 2022, 15(9):1779-1797.
[8] Rousseeuw P J, Hubert M. Anomaly detection by robust statistics[J]. WIREs Data Mining and Knowledge Discovery, 2018, 8(2):e1236.
[9] Yu Y, Zhu Y L, Li S J, et al. Time series outlier detection based on sliding window prediction[J]. Mathematical Problems in Engineering, 2014:1-14.
[10] Kulanuwat L, Chantrapornchai C, Maleewong M, et al. Anomaly detection using a sliding window technique and data imputation with machine learning for hydrological time series[J]. Water, 2021, 13(13):1862.
[11] Cabana E, Lillo R E, Laniado H. Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators[J]. Statistical Papers, 2021, 62(4):1583-1609.
[12] Sripriya T P, Srinivasan M R, Gallo M. Robust distance measure to detect outliers for categorical data[J]. Soft Computing, 2020, 24(18):13557-13564.
[13] Li J B, Izakian H, Pedrycz W, et al. Clustering-based anomaly detection in multivariate time series data[J]. Applied Soft Computing, 2021, 100:106919.
[14] Smiti A. A critical overview of outlier detection methods[J]. Computer Science Review, 2020, 38:100306.
[15] 何黎, 陈磊, 纪莎莎, 等. 基于K-shape聚类的连续液位监测数据异常检测方法[J]. 中国给水排水, 2023, 39(11):56-61.
[15] He L, Chen L, Ji S S, et al. Abnormal detection of continuous water level monitoring data based on K-shape clustering[J]. China Water & Wastewater, 2023, 39(11):56-61.
[16] Shi H X, Guo J, Deng Y D, et al. Machine learning-based anomaly detection of groundwater microdynamics:Case study of Chengdu,China[J]. Scientific Reports, 2023, 13(1):14718.
[17] Ayadi A, Ghorbel O, Obeid A M, et al. Outlier detection approaches for wireless sensor networks:A survey[J]. Computer Networks, 2017, 129(1):319-333.
[18] Sunderland K M, Beaton D, Fraser J, et al. The utility of multivariate outlier detection techniques for data quality evaluation in large studies:An application within the ONDRI project[J]. BMC Medical Research Methodology, 2019, 19:102.
doi: 10.1186/s12874-019-0737-5 pmid: 31092212
[19] Hardin J, Rocke D M. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator[J]. Computational Statistics & Data Analysis, 2004, 44(4):625-638.
[20] Hubert M, Debruyne M, Rousseeuw P J. Minimum covariance determinant and extensions[J]. WIREs Computational Statistics, 2018, 10(3):e1421.
[21] 孙杰. 基于FAST-MCD算法的异常成绩检测研究[J]. 现代计算机, 2021, 27(29):59-62.
[21] Sun J. Research on the abnormal grade detection based on the FAST-MCD algorithm[J]. Modern Computer, 2021, 27(29):59-62.
[22] Zhou Y J, Ren H R, Li Z W, et al. Anomaly detection via a combination model in time series data[J]. Applied Intelligence, 2021, 51(7):4874-4887.
[23] Lin S, Clark R, Birke R, et al. Anomaly detection for time series using VAE-LSTM hybrid model[C]// ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2020:4322-4326.
[24] Yokkampon U, Chumkamon S, Mowshowitz A, et al. Anomaly detection using variational autoencoder with spectrum analysis for time series data[C]// 2020 Joint 9th International Conference on Informatics,Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging,Vision & Pattern Recognition (icIVPR), 2020:1-6.
[25] Lyu J M, Wang Y Q, Chen S J. Adaptive multivariate time-series anomaly detection[J]. Information Processing & Management, 2023, 60(4):103383.
[26] Samariya D, Thakkar A. A comprehensive survey of anomaly detection algorithms[J]. Annals of Data Science, 2023, 10(3):829-850.
[27] Cleveland R B, Cleveland W S. STL:A seasonal-trend decomposition procedure based on Loess[J]. Journal of official statistics, 1990, 6(1):3-73.
[28] Rousseeuw P J, Driessen K V. A fast algorithm for the minimum covariance determinant estimator[J]. Technometrics, 1999, 41(3):212-223.
[29] Li J B, Zhang Y K, Zhou Z C, et al. Using multiple isotopes to determine groundwater source,age,and renewal rate in the Beishan preselected area for geological disposal of high-level radioactive waste in China[J]. Journal of Hydrology, 2024, 629:130592.
[30] Hubert M, Debruyne M. Minimum covariance determinant[J]. WIREs Computational Statistics, 2010, 2(1):36-43.
[31] Rousseeuw P J, Hubert M. Robust statistics for outlier detection[J]. WIREs Data Mining and Knowledge Discovery, 2011, 1(1):73-79.
[32] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
[32] Li H. Statistical learning methodology[M]. Beijing: Tsinghua University Press, 2012.
[1] 马明清, 陈亮, 王驹, 李晓军, 张智伟, 凌辉. 北山地下实验室科研数据动态管理系统的设计及应用[J]. 物探与化探, 2024, 48(6): 1559-1567.
[2] 王驹, 云龙. 高放废物地质处置地下实验室的定义、分类和功能以及我国北山下实验室的科研规划[J]. 物探与化探, 2024, 48(6): 1507-1518.
[3] 云龙, 陈苏, 傅磊, 庄海洋, 王驹. 高放废物北山地下实验室硐室群地震动反应特征研究[J]. 物探与化探, 2024, 48(6): 1519-1529.
[4] 叶勇, 陈亮, 刘健. 高放废物处置巷道尺度岩体适宜性评价[J]. 物探与化探, 2024, 48(6): 1545-1552.
[5] 罗辉, 陈伟明, 周志超, 刘健, 李亚伟, 田霄, 云龙. 高放废物地质处置预选地段调查与适宜性研究[J]. 物探与化探, 2023, 47(6): 1479-1489.
[6] 罗辉, 蒋实, 赵宏刚, 李亚伟, 田霄. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6): 1488-1496.
[7] 蒋实, 罗辉, 陈伟明, 李亚伟, 金远新. 高放废物地质处置算井子地段地质条件适宜性研究[J]. 物探与化探, 2021, 45(5): 1208-1216.
[8] 罗辉, 王驹, 蒋实, 赵宏刚, 金远新. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3): 568-575.
[9] 郭永海, 王驹, 王志明, 刘淑芬, 宗自华, 周佳. 高放废物处置库天然类比及其有关的地球化学问题[J]. 物探与化探, 2008, 32(5): 574-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com