Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1545-1552    DOI: 10.11720/wtyht.2024.1553
  “高放废物处置”专栏 本期目录 | 过刊浏览 | 高级检索 |
高放废物处置巷道尺度岩体适宜性评价
叶勇1,2(), 陈亮1,2(), 刘健1,2
1.核工业北京地质研究院,北京 100029
2.国家原子能机构高放废物地质处置创新中心,北京 100029
Tunnel-scale evaluation of rock mass suitability for the disposal of high-level radioactive waste
YE Yong1,2(), CHEN Liang1,2(), LIU Jian1,2
1. Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste, Beijing 100029, China
全文: PDF(2325 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩体适宜性评价是高放废物处置库选址和设计的核心内容之一,以判断场址岩体是否满足处置库长期包容和隔离核素的功能要求。在已提出的场址尺度QHLW岩体适宜性评价方法的基础上,本文进一步发展了处置巷道尺度岩体适宜评价准则,建立了“预评价+最终评价”两阶段的评价体系。同时,结合芬兰高放废物处置ONKALO地下实验室场址示范巷道1(DT1)揭露的地质水文信息,对处置巷道尺度两个阶段的评级标准体系进行测试和验证。对比分析优化QHLW获得的适宜性评价结果与芬兰RSC岩体适宜性评价方法定性评价结果,发现两种方法得出的评价结果基本一致,验证了处置巷道尺度岩体适宜性评价方法的可行性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶勇
陈亮
刘健
关键词 高放废物地质处置岩体适宜性评价处置巷道尺度    
Abstract

Rock mass suitability evaluation is a core part of the siting and design of a disposal repository for high-level radioactive waste, aiming to determine whether the rock masses at the site meet the functional requirements for long-term containment and radionuclides isolation. Based on the previously proposed site-scale evaluation method (QHLW) of rock mass suitability, this study further developed criteria for the tunnel-scale evaluation of rock mass suitability and established a two-phase evaluation system consisting of pre-evaluation and final evaluation. Additionally, in combination with geological and hydrological data revealed by demonstration tunnel 1 (DT1) at the site of the ONKALO underground research laboratory in Finland, this study tested and verified the criteria of the two-phase evaluation system on the disposal tunnel scale. The comparison between the suitability evaluation results obtained using the optimized QHLW and the qualitative evaluation results determined using the rock suitability classification (RSC) rock mass grading method indicates that both methods yielded roughly consistent results. This confirms the feasibility of the tunnel-scale evaluation method of rock mass suitability.

Key wordsgeological disposal of high-level radioactive waste    evaluation of rock mass suitability    tunnel-scale
收稿日期: 2023-12-21      修回日期: 2024-07-29      出版日期: 2024-12-20
ZTFLH:  P587  
  P597.3  
基金资助:国防科工局核设施退役与放射性废物治理专项(科工二司[2020]基础科研计划(JCKY2020201C003))
通讯作者: 陈亮(1982-),男,山东东营人,正高级工程师,博士,长期从事高放废物地质处置技术研究工作。Email:chenliang@briug.cn
引用本文:   
叶勇, 陈亮, 刘健. 高放废物处置巷道尺度岩体适宜性评价[J]. 物探与化探, 2024, 48(6): 1545-1552.
YE Yong, CHEN Liang, LIU Jian. Tunnel-scale evaluation of rock mass suitability for the disposal of high-level radioactive waste. Geophysical and Geochemical Exploration, 2024, 48(6): 1545-1552.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1553      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1545
处置罐体材料 地下水化学环境 C c h m , c T
同时满足以下2个条件:(1)7<pH<10;(2)[SO42-]<[Cl-]<2 500 mg·L-1 1.0
仅满足以下1个条件:(1)7<pH<10;(2)[SO42-]<[Cl-]<2 500 mg·L-1 0.8
以下2个条件均不满足:(1)7<pH<10;(2)[SO42-]<[Cl-]<2 500 mg·L-1 0.1
碳钢 同时满足以下2个条件:(1)8<pH<9.5;(2)[HCO3-]<6 000 mg·L-1且[Cl-]<3 000 mg·L-1 1.0
仅满足以下1个条件:(1)8<pH<9.5;(2)[HCO3-]<6 000 mg·L-1且[Cl-]<3 000 mg·L-1 0.8
以下2个条件均不满足:(1)8<pH<9.5;(2)[HCO3-]<6 000 mg·L-1且[Cl-]<3 000 mg·L-1 0.1
Table 1  处置罐体抗腐蚀系数 C c h m , c T取值范围[6]
地下化学环境 C c h m , b T取值
同时满足以下3个条件:(1)6<pH<10;(2)TDS<10 g·L-1;3)I>10-3mol·L-1 1.0
满足以下3个条件中的2个:(1)6<pH<10;(2)TDS<10 g·L-1;3)I>10-3mol·L-1 0.8
仅能满足以下3个条件中的1个或均不满足:(1)6<pH<10;(2)TDS<10 g·L-1;3)I>10-3mol·L-1 0.1
Table 2  缓冲材料抗腐蚀 C c h m , b T取值范围[6]
Q H L W T 质量等级 适宜性描述
(400,+∞] 适宜 岩体适宜性程度高,适合作为处置岩体
(10,400] 基本适宜 岩体适宜性程度一般,需要做更深入的研究,确定是否存在其他影响适宜性因素
≤10 不适宜 对该岩体应采取避开策略
Table 3  QHLW法处置巷道尺度围岩适宜性评价标准
Fig.1  ONKALO场址示范处置区域布局示意
Fig.2  示范巷道DT1断裂带及裂隙分布[12]
Fig.3  示范巷道DT1裂隙影响指标取值
取样深度/
m
参数
TDS pH Cl-浓度/
(mg·L-1)
HCO3-浓度/
(mg·L-1)
SO42-浓度/
(mg·L-1)
422~425 10.54 7.5 6150 420 19
488~492 21.2 7.5 7253 400 15
Table 4  示范巷道DT1地下水化学特征[13]
Fig.4  示范巷道DT1岩体渗透特性测量值[14]
Fig.5  示范巷道DT1渗透特性取值
Fig.6  示范巷道DT1流量分布[14]
Fig.7  示范巷道DT1渗透特性取值
Fig.8  示范巷道DT1岩体完整指标Q'[14]
Fig.9  示范巷道DT1 QHLW适宜性评价结果
Fig.10  示范巷道DT1 QHLW 适宜性评价结果
Fig.11  示范巷道DT1 RSC适宜性评价结果[2]
Fig.12  QHLW工程评价系统示意
Fig.13  示范巷道DT1处置坑布置示意[18]
[1] IEAE. Scientific and technical basis for the geological disposal of radioactive wastes[R]. Vienna: International Atomic Energy Agency, 2003.
[2] Mcewen T, Mattila J, Askokä P. Rock suitability classification-RSC[R]. Olkiluoto: Posiva Oy, 2012.
[3] Chen L, Wang J, Liu J. A new rock mass classification system QHLW for high-level radioactive waste disposal[J]. Engineering Geology, 2015, 190:33-51.
[4] 陈亮, 王驹, 刘健, 等. 高放废物地质处置岩体适宜性评价方法(QHLW)及其在地下实验室选址中的应用研究[J]. 岩石力学与工程学报, 2018, 37(6):1385-1394.
[4] Chen L, Wang J, Liu J, et al. A new system of rock suitability classification QHLW for high-level radioactive waste disposal and its application in the selection of URL site in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6):1385-1394.
[5] Heta L. Terminology report respect distance:The use of the term respect distance in Posiva and SKB[R]. Olkiluoto: Posiva Oy, 2007.
[6] 刘亦亨. 高放废物处置库巷道尺度岩体适宜性评价方法(Q_(HLW))研究[D]. 北京: 核工业北京地质研究院, 2019.
[6] Liu Y H. Study on the evaluation method of roadway-scale rock mass suitability (Q_(HLW)) for high level radioactive waste repository[D]. Beijing: Beijing Research Institute of Uranium Geology, 2019.
[7] Kierar I. Safety assessment report[R]. Wettingen:Nagra, 1994.
[8] Munier R, Hokmark H. Respect distances-rationale and means of computation[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co(SKB), 2004.
[9] Äikäs S B, Pete A. Exploring conditioned simulations of discrete fracture networks in support of hydraulic acceptance of deposition holes[R]. Olkiluoto: Posiva Oy, 2018.
[10] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4):189-236.
[11] Anna R, Ilkka L S M, Paula K. Design and construction of equipmentand experimental deposition holes in ONKALO demonstration tunnel 1[R]. Olkiluoto: Posiva Oy, 2017.
[12] Salminen P. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping the shafts and the demonstration tunnels[R]. Olkiluoto: Posiva Oy, 2015.
[13] Nina P, Eliisa H, Ylä-Mella M. Groundwater sampling at Olkiluoto,Eurajoki from the borehole OL-KR6 during a long-term pumping test in 2004[R]. Olkiluoto: Posiva Oy, 2006.
[14] Komulainen J, Pekkanen J. Difference flow measurements and hydraulic interference test in ONKALO at Olkiluoto drill holes ONK-PH16 and ONK-PH17[R]. Eurajoki: Posiva Oy, 2012.
[15] Hakala M. In situ stress measurements in ONKALO with LVDT-Cell[R]. Olkiluoto: Posiva Oy, 2017.
[16] Kärnbränslehantering S. Detailed site investigation programme for the construction and operation of the repository for spent nuclear fuel[R]. Olkiluoto: Posiva Oy, 2018.
[17] KÄrnbrÄnslehantering S. The integrated sulfide project-Summary Report[R]. Olkiluoto: Posiva Oy, 2019.
[18] Markström I SKA. Rock visualization system[R]. Olkiluoto: Posiva Oy, 2015.
[1] 马明清, 陈亮, 王驹, 李晓军, 张智伟, 凌辉. 北山地下实验室科研数据动态管理系统的设计及应用[J]. 物探与化探, 2024, 48(6): 1559-1567.
[2] 罗辉, 陈伟明, 周志超, 刘健, 李亚伟, 田霄, 云龙. 高放废物地质处置预选地段调查与适宜性研究[J]. 物探与化探, 2023, 47(6): 1479-1489.
[3] 罗辉, 蒋实, 赵宏刚, 李亚伟, 田霄. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6): 1488-1496.
[4] 蒋实, 罗辉, 陈伟明, 李亚伟, 金远新. 高放废物地质处置算井子地段地质条件适宜性研究[J]. 物探与化探, 2021, 45(5): 1208-1216.
[5] 罗辉, 王驹, 蒋实, 赵宏刚, 金远新. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3): 568-575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com