Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1189-1197    DOI: 10.11720/wtyht.2023.1352
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
川东北元坝地区致密砂岩多产状裂缝刻画
黄彦庆()
中国石化石油勘探开发研究院,北京 100083
Characterization of multi-attitude fractures in tight sandstones in the Yuanba area, northeastern Sichuan Basin
HUANG Yan-Qing()
Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China
全文: PDF(9055 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了准确刻画川东北元坝地区上三叠统须家河组致密砂岩中不同产状裂缝的分布,提出了一种基于裂缝敏感属性无监督聚类的裂缝预测方法。在叠后地震数据优化处理的基础上,提取并优选出断缝敏感属性,采用卷积神经网络深度学习算法,学习全球海量的各种类型断层和裂缝数据库,得到断缝强度、倾角和方位体。结合高精度导向曲率属性,在PCA降维的基础上,采用基于贝叶斯概率模型的无监督聚类算法,预测了不同倾角裂缝的强度,预测结果与成像测井裂缝解释结果吻合度高,与地质认识一致性好。须三段裂缝发育程度较须二段高,须三段既发育分布于九龙山背斜东南翼断层附近的断层成因缝,也有地层挠曲较大部位的褶皱成因缝,而须二段仅发育断层附近的断层成因缝。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄彦庆
关键词 多产状裂缝裂缝相裂缝预测致密砂岩元坝地区    
Abstract

This study proposed a fracture prediction method based on unsupervised clustering of fracture sensitivity attributes to accurately characterize the distribution of fractures with different attitudes in tight sandstones of the Upper Triassic Xujiahe formation in the Yuanba area, northeastern Sichuan. First, the sensitivity of fractures was extracted and selected based on the optimized post-stack seismic data. Then, the convolutional neural network, a deep learning algorithm, was used to learn global massive fault and fracture databases of various types, obtaining the intensities, dip angles, and azimuths of fractures. In combination with high-precision-guided curvature attributes, an unsupervised clustering algorithm based on the Bayesian probability model was used to predict the intensities of fractures with different dip angles through dimensionality reduction using principal component analysis (PCA). The prediction results are highly consistent with both the fracture interpretation results from imaging logs and the geological results. The results of this study show that the third member of the Xujiahe Formation has more developed fractures than the second member. Fractures in the third member include both the fault-induced fractures distributed near the faults in the southeast flank of the Jiulongshan anticline and the fold-induced fractures in the areas with large formation flexures. By contrast, only fault-induced fractures near the faults occur in the second member.

Key wordsmulti-attitude fractures    fracture facies    fracture prediction    tight sandstone    Yuanba area
收稿日期: 2022-07-13      修回日期: 2022-11-29      出版日期: 2023-10-20
ZTFLH:  P631.4  
基金资助:中国石化科研项目“川东北须家河组储层评价与甜点预测技术”(P19012-2)
作者简介: 黄彦庆(1980-),男,高级工程师,长期从事油气藏评价工作。Email: huangyq.syky@sinopec.com
引用本文:   
黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
HUANG Yan-Qing. Characterization of multi-attitude fractures in tight sandstones in the Yuanba area, northeastern Sichuan Basin. Geophysical and Geochemical Exploration, 2023, 47(5): 1189-1197.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1352      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1189
Fig.1  川东北元坝西部须家河组构造特征
a—元坝西部上三叠统须三段顶面构造;b—四川盆地须家河组气藏分布及元坝西部位置;c—NW向构造剖面
Fig.2  构造导向滤波优化处理前后地震剖面对比
Fig.3  分频重构处理前后的地震剖面对比
Fig.4  川东北元坝西部须三段砂组裂缝敏感属性
Fig.5  川东北元坝西部须家河组多属性聚类裂缝相预测结果
Fig.6  空间每一点处裂缝倾角判别原理
Fig.7  川东北元坝地区须三段成像井裂缝解释结果与预测结果
Fig.8  过YL12井不同产状裂缝预测剖面
Fig.9  元坝西部重点砂组裂缝分布
[1] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6):979-1007.
[1] Zou C N, Yang Z, Zhu R K, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6):979 -1007.
[2] 吕雪莹, 蒋有录, 刘景东, 等. 东濮凹陷杜寨地区沙三中下段致密砂岩气藏有效储层物性下限[J]. 地质科技情报, 2017, 36(3):182-188.
[2] Lyu X Y, Jiang Y L, Liu J D, et al. Lower limits of porosity and permeability of tight sandstone gas reservoirs in the middle-lower 3Es in Duzhai area,Dongpu depression[J]. Geological Science and Technology Information, 2017, 36(3):182-188.
[3] 袁静, 曹宇, 李际, 等. 库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J]. 石油与天然气地质, 2017, 38(5):840-850.
[3] Yuan J, Cao Y, Li J, et al. Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa Depression,Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):840-850.
[4] 谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
[4] Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
[5] 代瑞雪, 冉崎, 关旭, 等. 多尺度裂缝地震综合预测方法——以川中地区下寒武统龙王庙组气藏为例[J]. 天然气勘探与开发, 2017, 40(2):38-44.
[5] Dai R X, Ran Q, Guan X, et al. A comprehensive seismic method for multi- scale fracture prediction:A case study on Lower Cambrian Longwangmiao Formation gas reservoir,Central Sichuan Basin[J]. Natural Gas Exploration and Development, 2017, 40(2):38-44.
[6] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4):968-976.
[6] Xie R, Yan J G, Chen Q. Prestack inversion of anisotropic coefficients and its application in fracture prediction[J]. Geophysical and Geochemical Exploration, 2022, 46(4):968-976.
[7] 刘俊洲, 韩磊, 时磊, 等. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3):747-754.
[7] Liu J Z, Han L, Shi L, et al. Seismic prediction of tight sandstone reservoir fractures in XC area,western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3):747-754.
[8] 曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2):180-191.
doi: 10.7623/syxb202202002
[8] Zeng L B, Lyu W Y, Xu X, et al. Development characteristics,formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2):180-191.
[9] 尹川, 杜向东, 赵汝敏, 等. 基于倾角控制的构造导向滤波及其应用[J]. 地球物理学进展, 2014, 29(6):2818-2822.
[9] Yin C, Du X D, Zhao R M, et al. Dip steered structure oriented filter and ite application[J]. Progress in Geophysics, 2014, 29(6):2818-2822.
[10] 赵明章, 范雪辉, 刘春芳, 等. 利用构造导向滤波技术识别复杂断块圈闭[J]. 石油地球物理勘探, 2011, 46(S1):128-133.
[10] Zhao M Z, Fan X H, Liu C F, et al. Complex fault-block traps identification with structure oriented filter[J]. OGP, 2011, 46(S1):128-133.
[11] 张璐, 何峰, 陈晓智, 等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏, 2020, 32(2):108-114.
[11] Zhang L, He F, Chen X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020, 32(2):108-114.
[12] 解淑林, 宁松华, 曾德龙, 等. 倾角构造导向滤波方法识别小断层[J]. 中国锰业, 2017, 35(2):79-81.
[12] Xie S L, Ning S H, Zeng D L, et al. Recognition of minor faults by dip structure oriented filtering[J]. China’s Manganese Industry, 2017, 35(2):79-81.
[13] Hoecker C, Fehmers G. Fast structural interpretation with structure-oriented filtering[J]. The Leading Edge, 2002: 21(2):238-243.
doi: 10.1190/1.1463775
[14] 白雪峰, 霍进杰, 朱明, 等. 倾角导向体约束下的储层预测技术[J]. 物探化探计算技术, 2014, 36(1):107-112.
[14] Bai X F, Huo J J, Zhu M, et al. Reservoir prediction technique on restrain of dip steering cube[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(1):107-112.
[15] 司丽, 王彦辉, 佟洪梅, 等. 基于地震属性体的三维可视化井震匹配断层解释[J]. 油气藏评价与开发, 2013, 3(3):1-4.
[15] Si L, Wang Y H, Tong H M, et al. 3D visualization well-seismic match fault interpretation based on seismic attribute[J]. Reservoir Evaluation and Development, 2013, 3(3):1-4.
[16] 谢舟, 李斌, 徐红霞, 等. 多属性分析技术在桑塔木油田断块油气藏中的应用[J]. 石油地球物理勘探, 2017, 52(S1):181-188.
[16] Xie Z, Li B, Xu H X, et al. Seismic multi-attribute analysis used in the development of Sangtamu Oilfield[J]. OGP, 2017, 52(S1):181-188.
[17] 刘丹. 低序级断层描述技术研究及应用——以八面河油田北区为例[J]. 石化技术, 2020, 27(4):122-123.
[17] Liu D. Research and application of lower-class faults description technology:A case study in the north area of Bamianhe oilfield[J]. Petrochemical Industry Technology, 2020, 27(4):122-123.
[18] 穆龙新, 赵国良, 田中元, 等. 储层裂缝预测研究[M]. 北京: 石油工业出版社, 2009.
[18] Mu L X, Zhao G L, Tian Z Y, et al. Research on reservoir fracture prediction[M]. Beijing: Petroleum Industry Press, 2009.
[19] 甄宗玉, 郑江峰, 孙佳林, 等. 基于最大似然属性的断层识别方法及应用[J]. 地球物理学进展, 2020, 35(1):374-378.
[19] Zhen Z Y, Zheng J F, Sun J L, et al. Fault ientification method based on the maximum likelihood attribute and its application[J]. Progress in Geophysics, 2020, 35(1):374-378.
[20] Hale D. Methods to compute fault images,extract fault surfaces,and estimate fault throws from 3D seismic images[J]. Geophysics, 2013: 78(2):33-43.
[21] 周艳辉, 高静怀. 局部结构熵算法在地震数据不连续性检测中的应用[J]. 煤田地质与勘探, 2007, 35(1):71-73.
[21] Zhou Y H, Gao J H. Application of local structural entropy measure on the detection of discontimuity of seismic data[J]. Coal Geology & Exploration, 2007, 35(1):71-73.
[22] 何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密—低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4):710-718.
[22] He F Q, Liang C C, Lu C, et al. Identification and description of fault-fracture bodies in tight and low permeability reservoirs in transitional zone at the south margin of Ordoc Basin[J]. Oil & Gas Geology, 2020, 41(4):710-718.
[23] 王世星. 高精度地震曲率体计算技术与应用[J]. 石油地球物理勘探, 2012, 47(6):965-972.
[23] Wang S X. High-precision calculation of seismic volumetric curvature attributes and its applications[J]. OGP, 2012, 47(6):965-972.
[24] 李维, 陈刚, 王东学, 等. 利用最大正、负曲率识别准噶尔盆地吉木萨尔凹陷芦草沟组甜点段微小断层开启性[J]. 石油地球物理勘探, 2022, 57(1):184-193.
[24] Li W, Chen G, Wang D X, et al. Identification of micro fault opening in sweet-spot member of Lucaogou Formation in Jimusar Sag of Junggar Basin by maximum positive and negative curvature[J]. OGP, 2022, 57(1):184-193.
[1] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[2] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[3] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[4] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[5] 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017, 41(4): 748-752.
[6] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[7] 时磊, 刘俊州, 董宁, 王箭波, 夏红敏, 王震宇. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2): 346-351.
[8] 王丹, 贾跃玮, 魏水建, 郑文波. 新场须四段叠后裂缝综合预测[J]. 物探与化探, 2014, 38(5): 1038-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com