Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1241-1250    DOI: 10.11720/wtyht.2022.1500
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
多分量重力梯度数据联合欧拉反褶积与软件系统设计
孙伯轩1(), 侯振隆1(), 周文月2, 巩恩普1, 郑玉君1, 程浩1
1.东北大学 资源与土木工程学院,辽宁 沈阳 110819
2.中国自然资源航空物探遥感中心,北京 100083
Joint Euler deconvolution of multi-component gravity gradient data and software design
SUN Bo-Xuan1(), HOU Zhen-Long1(), Zhou Wen-Yue2, GONG En-Pu1, Zheng Yu-Jun1, CHENG Hao1
1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(6276 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

和传统欧拉反褶积相比,重力梯度数据联合欧拉反褶积具有更高的计算精度和反演分辨率。为了消除计算产生的发散解,在应用中须使用不同的筛选方法,使得计算流程变得相对繁琐。可见提供有效的筛选方法与开发一个易用的可视化软件有利于提高该方法的准确性、便捷性和使用效果。因此,本文提出基于相关系数边界识别约束的重力梯度数据联合欧拉反褶积,并依据界面直观、功能实用、代码简洁的设计原则,针对算法流程与功能需求,利用Python语言及其函数库设计了一种支持数据/文件管理、二/三维可视化、边界识别、重力梯度数据联合欧拉反褶积等功能的软件系统。通过理论模型与实测数据试验,验证了计算的准确性和软件的实用性,设计的软件系统能够提高应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙伯轩
侯振隆
周文月
巩恩普
郑玉君
程浩
关键词 重力梯度数据欧拉反褶积边界识别软件系统设计    
Abstract

Compared with Euler deconvolution, joint Euler deconvolution of multi-component gravity gradient data features higher calculation accuracy and inversion resolution. To eliminate the divergent solutions of calculation, different screening methods must be used in the application of joint Euler deconvolution of multi-component gravity gradient data, making the calculation process cumbersome. It is evident that effective screening methods and developing a piece of easy-to-use and visual software can improve the accuracy, convenience, and effects of the joint Euler deconvolution of multi-component gravity gradient data. Therefore, this study proposed the joint Euler deconvolution of gravity gradient data with the constraint of edge detection based on correlation coefficients. Moreover, on the design principles of the intuitive interfaces, practical functions, and concise codes, this study designed a software system with functions such as data/file management, two-dimensional/three-dimensional visualization, edge detection, and joint Euler deconvolution of multi-component gravity gradient data using Python language and its function library to meet the requirements of algorithm flow and functions. The accuracy of calculations and the practicability of the software have been verified through a theoretical model and tests of measured data, proving that the software designed in this study can improve the application effects.

Key wordsgravity gradient data    Euler deconvolution    edge detection    software design
收稿日期: 2021-09-03      修回日期: 2022-02-18      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:中央高校基本科研业务专项资金项目(N2101007);国家重点研发计划项目(2017YFC1503101);国家自然科学基金NSFC-山东联合基金项目(U1806208)
通讯作者: 侯振隆
作者简介: 孙伯轩(1993-),男,辽宁沈阳人,硕士研究生,主要从事重磁勘探数据处理解释研究工作。Email:960143992@qq.com
引用本文:   
孙伯轩, 侯振隆, 周文月, 巩恩普, 郑玉君, 程浩. 多分量重力梯度数据联合欧拉反褶积与软件系统设计[J]. 物探与化探, 2022, 46(5): 1241-1250.
SUN Bo-Xuan, HOU Zhen-Long, Zhou Wen-Yue, GONG En-Pu, Zheng Yu-Jun, CHENG Hao. Joint Euler deconvolution of multi-component gravity gradient data and software design. Geophysical and Geochemical Exploration, 2022, 46(5): 1241-1250.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1500      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1241
Fig.1  边界识别结果可视化(图中红色线框表示立方体边界)
a—总水平导数法;b—方向总水平导数法;c—解析信号法;d—改进的方向总水平导数法;e—归一化方向总水平导数法;f—倾斜角法
Fig.2  软件结构
Fig.3  软件主页面
Fig.4  算法流程
Fig.5  文件预览窗口
Fig.6  数据操作窗口
Fig.7  文件储存路径选择窗口
Fig.8  测线切换窗口
Fig.9  软件输出的边界识别结果
Fig.10  划定地质体范围输入界面
Fig.11  重力梯度数据联合欧拉反褶积计算参数输入界面
Fig.12  重力梯度数据联合欧拉反褶积初步计算结果
Fig.13  结果筛选标准输入界面
Fig.14  重力梯度数据联合欧拉反褶积计算结果可视化
Fig.15  重力异常数据与重力梯度数据等值线(图中红色线框表示立方体边界)
a—Vxx分量;b—Vxy分量;c—Vxz分量;d—Vyy分量;e—Vyz分量;f—Vzz分量;g—Vz
Fig.16  辅助线框坐标输入界面
模型 中心位置/
(m,m,m)
尺寸大小/
(m,m,m)
剩余密度/
(g·cm-3)
A 1500, 500, 150 600×600×100 1
B 500, 1500, 450 600×600×100 1
C 500, 500, 750 600×600×100 1
  立方体模型参数表
Fig.17  边界识别结果可视化(图中红色线框表示立方体边界)
Fig.18  筛选后的重力梯度数据联合欧拉反褶积计算结果
Fig.19  文顿盐丘数据联合欧拉反褶积计算结果
a—三维显示;b—z方向视图
[1] Hou Z L, Wei X H, Huang D N. Fast density inversion solution for full tensor gravity gradiometry data[J]. Pure and Applied Geophysics, 2016, 173(2): 509-523.
doi: 10.1007/s00024-015-1129-3
[2] 汤井田, 史庆斌, 胡双贵, 等. 基于重力梯度张量曲率的边界识别[J]. 地球物理学报 2019, 62(5):1872-1884.
[2] Tang J T, Shi Q B, Hu S G, et al. Edge detection based on curvature of gravity gradient tensors[J]. Chinese Journal of Geophysics, 2019, 62(5): 1872-1884.
[3] 张琦. 重力梯度数据的边界识别与深度成像方法研究[D]. 长春: 吉林大学, 2019.
[3] Zhang Q. The study on edge detection and depth imaging method for gravity gradient data[D]. Changchun: Jilin University, 2019.
[4] 郑玉君, 侯振隆, 巩恩普, 等. 基于深度加权的多分量重力梯度数据联合相关成像方法[J]. 吉林大学学报:地球科学版, 2020, 50(4):1197-1210.
[4] Zheng Y J, Hou Z L, Gong E P, et al. Correlation imaging method with joint multiple gravity gradiometry data based on depth weighting[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(4): 1197-1210.
[5] Thompson D T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1): 31-37.
doi: 10.1190/1.1441278
[6] Cooper G R J. Euler Deconvolution with improved accuracy and multiple different structural indices[J]. Journal of China University of Geosciences, 2008, 19(1):72-76.
doi: 10.1016/S1002-0705(08)60026-6
[7] Petar S, Alan R. Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index[J]. Society of Exploration Geophysicists, 2010, 75(6): 151-158.
[8] Wang J, Meng X H, Li F. New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data[J]. Journal of Applied Geophysics, 2017, 136: 326-334.
doi: 10.1016/j.jappgeo.2016.11.017
[9] Eric N N, Koumetio F, Victor J, et al. Gravity study of the Douala sub-basin (Cameroon) using Euler 3D deconvolution, source edge detection (SED) and special function analysis[J]. SN Applied Sciences, 2019, 1(10): 1-17.
doi: 10.1007/s42452-018-0001-3
[10] Zhang C, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000, 65(2): 512-520.
doi: 10.1190/1.1444745
[11] Majid B, Laust B P. Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J]. Geophysics, 2010, 75(6): 137-149.
[12] 周文月, 陈昌昕, 侯振隆, 等. 不同高度数据联合欧拉反褶积法研究[J]. 地球物理学报, 2018, 61(8):3400-3409.
[12] Zhou W Y, Chen C X, Hou Z L, et al. The study on the joint Euler deconvolution method of different heights[J]. Chinese Journal of Geophysics, 2018, 61(8): 3400-3409.
[13] 侯振隆, 王恩德, 周文纳, 等. 重力梯度欧拉反褶积及其在文顿盐丘的应用[J]. 石油地球物理勘探, 2019, 54(2):472-479.
[13] Hou Z L, Wang E D, Zhou W N, et al. Euler deconvolution of gravity gradiometry data and the application in Vinton Dome[J]. Oil Geophysical Prospecting, 2019, 54(2): 472-479.
[14] 马国庆, 吴琪, 李丽丽. 重力梯度张量联合欧拉反褶积法研究[J]. 地球物理学进展, 2020, 35(6):2188-2193.
[14] Ma G Q, Wu Q, Li L L. Study on the joint Euler deconvolution method of gravity gradient tensor data[J]. Progress in Geophysics, 2020, 35(6): 2188-2193.
[15] 王林飞, 薛典军, 何辉, 等. 插件技术在GeoProbe地球物理软件平台中的应用[J]. 物探与化探, 2013, 37(3):547-551.
[15] Wang L F, Xue D J, He H, et al. The application of the plug-in technology to geophysical software platform (GeoProbe)[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 547-551.
[16] Norman S N, James C. Seismic image undersampling-resolution, visibility, and display[J]. Society of Exploration Geophysicists, 2017, 37(1): 37-45.
[17] 詹毅, 徐少波, 雷娜, 等. 国产大型地震数据处理解释一体化软件GeoEast推广应用实践[J]. 石油科技论坛, 2020, 39(1):67-71.
[17] Zhan Y, Xu S B, Lei N, et al. Promote application of GeoEast-large-scale domestic seismic data processing and interpretation integrated software[J]. Oil Forum, 2020, 39(1): 67-71.
[18] 郑元满, 姚长利, 李泽林, 等. 重磁处理解释系统软件设计与关键实现技术[J]. 地球物理学报, 2019, 62(10):3744-3759.
[18] Zheng Y M, Yao C L, Li Z L, et al. Software design and key implementation techniques of gravity and magnetic processing and interpretation system[J]. Chinese Journal of Geophysics, 2019, 62(10): 3744-3759.
[19] 陈靖, 王万银, 郭文波, 等. 重磁软件架构设计及实现方案研究[J]. 物探与化探, 2020, 44(4):905-913.
[19] Chen J, Wang W Y, Guo W B, et al. A study of the design and implementation of gravity and magnetic software[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 905-913.
[20] 王浩然. 基于并行计算与深度学习算法的大规模重磁数据反演研究[D]. 长春: 吉林大学, 2020.
[20] Wang H R. The study on the gravity and magnetic inversion based on parallel computing and deep learning algorithm[D]. Changchun: Jilin University, 2020.
[21] 张浩平, 付媛媛. VC++调用Matlab实现三维欧拉反褶积运算[J]. 物探化探计算技术, 2006, 28(2):178-181,88.
[21] Zhang H P, Fu Y Y. Implementation of 3-D Euler disconvolution by VC++ Calling Matlab[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(2): 178-181,88.
[22] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[22] Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.
[23] Miller H G, Singh V. Potential field Tilt-A new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32: 213-217.
doi: 10.1016/0926-9851(94)90022-1
[24] Guo C W, Xing Z, Wang L F, et al. Three-directional analytic signal analysis and interpretation of magnetic gradient tensor[J]. Applied Geophysics, 2020, 17(2): 285-296.
doi: 10.1007/s11770-020-0803-0
[25] 王万银. 位场总水平导数极值位置空间变化规律研究[J]. 地球物理学报, 2010, 53(9):2257-2270.
[25] Wang W Y. Spatial variation law of the extreme value positions of total horizontal derivative for potential field data[J]. Chinese Journal of Geophysics, 2010, 53(9): 2257-2270.
[26] Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3): 226-233.
doi: 10.1007/s11770-009-0026-x
[27] 袁园, 黄大年, 余青露. 利用加强水平方向总水平导数对位场全张量数据进行边界识别[J]. 地球物理学报, 2015, 58(7):2556-2565.
[27] Yuan Y, Huang D N, Yu Q L. Using enhanced directional total horizontal derivatives to detect the edge of potential-field full tensor data[J]. Chinese Journal of Geophysics, 2015, 58(7): 2556-2565.
[28] 侯振隆, 王恩德, 唐水亮, 等. 方向总水平导数法的改进和边界识别中的应用[J]. 东北大学学报:自然科学版, 2019, 40(1):104-108.
[28] Hou Z L, Wang E D, Tang S L, et al. Improvements of the directional total horizontal derivatives and their application in edge detection[J]. Journal of Northeastern University:Natural Science, 2019, 40(1): 104-108.
[29] 秦朋波. 重力和重力梯度数据联合反演方法研究[D]. 长春: 吉林大学, 2016.
[29] Qin P B. A study on integrated gravity and gravity gradient data in inversion[D]. Changchun: Jilin University, 2016.
[30] 高秀鹤. 重磁及张量梯度数据三维反演方法研究与应用[D]. 长春: 吉林大学, 2019.
[30] Gao X H. The study and application of 3D inversion methods gravity & magnetic their gradient tensor data[D]. Changchun: Jilin University, 2019.
[31] 周文月. 重磁张量场源空间分布特征反演技术研究[D]. 长春: 吉林大学, 2019.
[31] Zhou W Y. Research on inversion technique of distribution characteristics of gravity and magnetic tensor field sources[D]. Changchun: Jilin University, 2019.
[1] 王润生, 武斌, 张海瑞, 于嘉宾, 董彦龙, 郭国强, 康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论[J]. 物探与化探, 2023, 47(2): 279-289.
[2] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[3] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
[4] 刘城, 杨宇山, 刘天佑, 朱丹, 安百州. 根据重力资料定性与定量解释银川平原断裂体系[J]. 物探与化探, 2019, 43(1): 28-35.
[5] 李弘, 俞建宝, 吕慧, 肖鹏飞. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2): 242-248.
[6] 王明, 何辉, 王林飞, 刘前坤. 高斯——拉普拉斯算子场源边界识别方法[J]. 物探与化探, 2015, 39(S1): 137-143.
[7] 王赛昕, 颜廷杰, 周栋良. 赣中新余式铁矿地面和井中磁测资料综合处理解释[J]. 物探与化探, 2015, 39(3): 478-484.
[8] 刘天佑, 高文利, 冯杰, 习宇飞, 欧洋. 井中三分量磁测的梯度张量欧拉反褶积及应用[J]. 物探与化探, 2013, 37(4): 633-639.
[9] 王明, 郭志宏, 何辉, 罗锋. 基于反双曲正切的位场边界识别技术[J]. 物探与化探, 2013, 37(4): 655-663.
[10] 王明, 骆遥, 罗锋, 田嵩. 欧拉反褶积在重磁位场中应用与发展[J]. 物探与化探, 2012, 36(5): 834-841.
[11] 石磊, 郭良辉, 孟小红. 估计磁场源位置的倾斜角梯度算法改进[J]. 物探与化探, 2012, 36(2): 287-292.
[12] 王明, 郭志宏, 骆遥, 罗锋, 郭华, 屈进红. Tilt-Euler方法在位场数据处理及解释中的应用[J]. 物探与化探, 2012, 36(1): 126-132.
[13] 史辉,刘天佑,DawiMunaGhaboush. 利用欧拉反褶积法估计二度磁性体深度与位置[J]. 物探与化探, 2005, 29(3): 230-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com