Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (2): 244-256    DOI: 10.11720/wtyht.2019.1379
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例
杨笑笑1, 罗先熔1, 文美兰1, 欧阳菲1, 吕星海2, 尹高科2, 郑广明2
1. 桂林理工大学 地球科学学院,广西 桂林 541004
2. 河南省地质矿产勘查开发局 第四地质勘查院,河南 郑州 450001
The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain, western Henan Province: A case study of the Shilongshan gold polymetallic ore prospecting area in Luoning County
Xiao-Xiao YANG1, Xian-Rong LUO1, Mei-Lan WEN1, Fei OU-Yang1, Xing-Hai LYu2, Gao-Ke YIN2, Guang-Ming ZHENG2
1. College of Earth Sciences,Guilin University of Technology, Guilin 541004,China
2. The Fourth Geological Exploration Institute of Henan Geology and Mineral Bureau, Zhengzhou 450001,China
全文: PDF(7997 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

豫西崤山北部沟壑纵横,第四系黄土广泛覆盖,地表植被发育。为探讨地电化学法在豫西崤山黄土覆盖区寻找金矿的有效性,选择了隐伏于黄土下的石寨沟金矿开展找矿可行性试验,并在其邻区石龙山金多金属矿预查区南部开展地电化学找矿研究。研究发现,石寨沟Au矿床上部发育地电化学综合异常,异常规律明显,元素相关性较好,具有很好的套合和分带关系。对石龙山预查区地电提取的微量元素含量特征(分形、变异系数、地电提取比)进行分析,发现其与石寨沟Au矿床具有相近的地电异常规律。进一步利用Surfer软件绘制等值线异常图,结合前人研究成果在异常套合较好的02号线45~47测点初步经过地表工程验证,确定了一条品位较好的工业金矿体,侧面证明实测、推测断层F1-1和F20确实存在。该成果为石龙山地区深部及石寨沟矿床外围找矿提供地电化学理论基础,也为崤山黄土覆盖区找矿提供了新的思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨笑笑
罗先熔
文美兰
欧阳菲
吕星海
尹高科
郑广明
关键词 黄土覆盖区地电化学法分形找矿预测豫西洛宁    
Abstract

Xiaoshan Mountain widely covered by the Quaternary sediments is located in the west of Henan Province. Its north part is ravines crossbar, and the surface vegetation grows fully and covers the surface heavily. In order to investigate the effectiveness of the earth electrochemical method in the search for gold deposits in the Xiaoshan loess-covered area in western Henan, the authors selected Shizhaigou gold deposit which is buried in loess to carry out the feasibility test of ore prospecting, and conduct geo-electrochemical prospecting in the south of the Shillongshan gold polymetallic mineral survey area and its adjacent area of Xiaoshan. The study revealed that the electrochemical composite anomaly in the development area of the Au deposit in Shizhaigou is obvious , the elements are well correlated and they have good nesting and zoning relationships. The authors analyzed the trace element content characteristics (fractal, coefficient of variation and extraction ratio of the geoelectric extraction) extracted from the geoelectricity of Shilongshan census area and found that it has similar geoelectricity anomaly patterns to the Shizhaigou gold deposit. In addition, the authors used Surfer software to draw the contour abnormal map and, in combination with previous research results, initially verified the surface of well-arranged 45-47 surveying points along No.02 line through surface engineering, thus determining an industrial gold orebody with good reserves. It is thus proved that the measured and inferred faults F1-1 and F20 do exist. The results provide a theoretical basis for electrochemical prospecting in the search for deep deposits in the Shilongshan area and the periphery of the Shizhaigou deposit, and also provide new ideas for the prospecting work in the loess-covered loess area.

Key wordsloess covered area    geoelectric extraction method    fractal    prospecting forecast    Luoning in western Henan Province
收稿日期: 2018-10-21      出版日期: 2019-04-10
:  P632  
基金资助:国家重点研发计划项目“深部铀成矿信息识别技术研究”(2017YFC0602604HT02);“穿透性地球化学勘查技术”(2016YFC0600603);广西教育厅项目(2017KY0239)
作者简介: 杨笑笑(1993-),男,硕士研究生,主要从事矿床学及地球化学研究工作。Email: 1985672733@qq.com
引用本文:   
杨笑笑, 罗先熔, 文美兰, 欧阳菲, 吕星海, 尹高科, 郑广明. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019, 43(2): 244-256.
Xiao-Xiao YANG, Xian-Rong LUO, Mei-Lan WEN, Fei OU-Yang, Xing-Hai LYu, Gao-Ke YIN, Guang-Ming ZHENG. The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain, western Henan Province: A case study of the Shilongshan gold polymetallic ore prospecting area in Luoning County. Geophysical and Geochemical Exploration, 2019, 43(2): 244-256.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1379      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I2/244
Fig.1  豫西崤山地区地质图(据参考文献[19]、[42]修改)
a—研究区地质概况图;b—区域构造图;c—研究区矿床点分布示意
成矿特征要素 石寨沟 金鸡山 申家窑
矿床规模 小型 小型 小型
矿床类型 构造蚀变岩型 构造蚀变岩型 构造蚀变岩型
控矿地层 中元古界长城系熊耳群中下部的许山组及马家河组 中元古界长城系熊耳群中下部的许山组及马家河组 太华群变质岩系
控矿构造 NW-NWW 向、NE-NEE 向及近 SN向,其中 NW-NWW 向和NE-NEE 向断裂为主要含矿断裂 NW、NE和近SN向断裂,其中NE向断裂破碎带是区内主要的容矿构造 矿体受NW-NNW向韧性拆离断层及叠加在其之上的脆性正断层控制,多沿断裂带产出
控矿岩体 燕山晚期花岗闪长岩、花岗斑岩 燕山晚期花岗斑岩、花岗闪长岩 燕山晚期花岗斑岩
矿石矿物成分 主要有自然金、黄铁矿、闪锌矿、方铅矿、黄铜矿 主要有自然金、银金矿、黄铁矿、黄铜矿、方铅矿、闪锌矿、菱铁矿及微量的黑钨矿、白钨矿、毒砂 黄铁矿最为常见,部分矿石样品中方铅矿有大量产出。其他金属矿物还有毒砂、黄铜矿、闪锌矿以及少量金、银矿物
脉石矿物成分 石英、绢云母、绿泥石、钾长石、铁白云石 石英、绢云母、白云石、钾长石、黑云母、重晶石、绿帘石、锆石 石英、菱铁矿,局部可见绢云母
矿石结构构造 自形—半自形结构、他形粒状结构、压碎结构、包含结构,块状构造、角砾状构造、浸染状构造 自形晶、半自形晶、它形晶粒状结构,块状构造、条带状构造、浸染状构造和晶洞状构造 自形—半自形粒状结构、他形结构、拔丝结构、压碎结构、揉皱结构为主,条带状、网脉状、团块状和晶洞构造
围岩蚀变 硅化、绢云母化、黄铁绢英岩化、碳酸盐化、绿泥石化 硅化、黄铁矿化、方铅矿化、绿泥石化、绢云母化、泥化 硅化、黄铁绢英岩化、碳酸盐化,部分绿泥石化和少量高岭土化
矿床有益组分 Au、Cu、Pb、Zn Au、Ag、Cu、Pb、Zn Au、Ag、Cu、Pb、Zn、As
Table 1  研究区主要金矿床成矿地质特征
元素 背景值 异常
宽度
异常
强度
异常点号范围 峰值
测点
异常
峰值
异常
形状
对应矿体、地质状况
Au 2 180 14.54 6、12、13、18~22 12 36.53 单峰 F7金矿带、 F6含金矿化带
Ag 0.03 220 0.04 1~3、13~15、20~22 13 0.034 波状 F7金矿带、 F6含金矿化带
Cu 16 180 30.81 8~13、19、22 9 2171 双峰 F6、 F7金矿带(有钻孔数据)
Pb 21 340 108.05 12~19、20~24 12 347.7 单峰 F7金矿带、 F6含金矿化带
Zn 33 360 56.42 2~4、12~23 13 133.10 梯形 F7金矿带、 F6含金矿化带
Cr 12 340 18.31 1~4、12~21 17 26.60 多峰 F7金矿带、 F6含金矿化带
Co 4 340 5.24 1~4、12~21 4 7.33 多峰 F6、 F7含金矿化带或深部隐伏矿体
Ni 18 340 20.76 1~4、12~21 4 27.96 多峰 F6、 F7含金矿化带或深部隐伏矿体
Li 17 340 19.74 1~4、12~21 4 25.72 多峰 F6、F7含金矿化带或深部隐伏矿体
As 5 400 6.38 1~6、12~22 4 7.80 多峰 F6、 F7含金矿化带或深部隐伏矿体
Bi 0.15 340 0.17 1~4、12~21 21 0.217 多峰 F6金矿带边缘(有探槽TC605)
Ba 90 340 102.67 1~4、12~21 4 142.60 多峰 F6、 F7含金矿化带或深部隐伏矿体
La 12 320 14.74 1~4、13~21 4 19.71 多峰 F6、 F7含金矿化带或深部隐伏矿体
Zr 11 340 13.99 1~4、12~21 4 17.04 多峰 F6、 F7含金矿化带或深部隐伏矿体
Table 2  试验剖面地电提取异常参数
Fig.2  试验剖面地电化学异常特征
Fig.3  元素含量分形特征
微量
元素
极大值 极小值 标准
偏差
平均值 变异
系数
陆壳
丰度[38]
提取比 分维数 背景值
D1 D2 D3
Li 26.44 0.20 6.13 7.17 0.85 24.1 0.30 0.258 1.597 5.091 6.92
Cr 29.90 1.21 6.51 8.84 0.77 102 0.09 0.425 1.420 3.848 7.76
Co 11.32 0.61 1.97 2.75 0.72 23.7 0.12 0.550 1.689 4.297 2.65
Ni 29.29 0.61 7.06 10.01 0.71 93.6 0.11 0.261 1.509 6.588 8.32
Cu 403.80 0.45 23.24 10.98 2.12 53.6 0.20 0.416 1.887 8.51
Zn 85.55 2.24 13.86 19.82 0.70 75.5 0.26 0.375 1.319 4.705 16.98
As 10.22 1.21 1.74 4.03 0.43 2.29 1.76 0.969 4.516 4.68
Zr 21.61 0.33 4.94 6.19 0.80 204 0.03 0.277 1.543 5.402 5.75
Ag 0.109 0.006 0.01 0.03 0.42 0.052 0.58 0.648 4.400 0.026
Ba 188.60 1.63 34.97 42.79 0.82 449 0.10 0.199 0.793 3.671 23.44
La 21.32 0.22 4.88 5.84 0.84 34.1 0.17 0.310 1.417 4.131 5.62
Au 49.91 0.051 3.90 3.78 1.03 1.42 2.66 0.168 1.108 2.685 1.86
Pb 205 1.53 22.28 15.81 1.41 14.2 1.11 0.649 1.481 13.24
Bi 0.59 0.004 0.06 0.08 0.81 0.586 0.30 0.304 2.377 7.599 0.09
Table 3  地电提取元素数据统计
Fig.4  石龙山研究区地电提取测线分布
Fig.5  地电提取元素F1、F2组合异常
Fig.6  石龙山研究区工程验证剖面
[1] Govett G J S . Differential secondary dispersion in transported soils and post mine ralization rocks:An electrochemical interpretation[G]//Jones M J.Geo-chemical Exploration, I. M. M. Publ., 1972: 81-91.
[2] Ryss Yu . S. Goldberg I. S. The method of partial extraction of metals (CHIM) for exploration of ore deposits[J]. Methods Tech. Explore., 1973(84):5-19.
[3] Kieran D . Fluid-rock interaction in crustal shear zone: a directed percolation approach[J]. Geology, 1994,( 22):843-846.
doi: 10.1130/0091-7613(1994)0222.3.CO;2
[4] 张肇元, 崔霖沛 , 译. 地电化学勘探法[M]. 北京: 地质出版社, 1986.
[4] Zhang Z Y, Cui L P. Exploration geo-electrochemical method [M]. Beijing: Geological Publishing House, 1986.
[5] 汤磊, 罗先熔 . 内蒙古额尔古纳市虎拉林金矿区地电化学提取法寻找隐伏金矿研究[J]. 地质与勘探, 2007,43(3):68-73.
doi: 10.3969/j.issn.0495-5331.2007.03.014
[5] Tang L, Luo X R . Geo-electrochemical extraction method for prospecting buried gold ores in the Hulalin gold deposit, Eerguna city, Inner Mongolia[J]. Geology and Prospecting, 2007,43(3):68-73.
[6] 陈彪, 罗先熔, 邱炜 , 等. 地电提取法在黑龙江金厂金矿区寻找隐伏金矿的应用[J]. 桂林工学院学报, 2009,29(1):31-34.
doi: 10.3969/j.issn.1674-9057.2009.01.005
[6] Chen B, Luo X R, Qiu W , et al. Gold ore deposit prospecting by geo-electrochemical extraction method in Jinchang, Heilongjiang[J]. Journal of Guilin University of Technology, 2009,29(1):31-34.
[7] 李兆谊, 罗先熔, 候冬梅 , 等. 地电化学集成技术在黑龙江金厂金矿的应用研究及找矿预测[J]. 黄金科学技术, 2010,18(5):117-122.
doi: 10.3969/j.issn.1005-2518.2010.05.028
[7] Li Z Y, Luo X R, Hou D M , et al. Applied research and prospecting forecast of integrated technologies of geo-electrical chemistry in Jinchang gold mine, Heilongjiang Province[J]. Gold Science and Technology, 2010,18(5):117-122.
[8] 杨龙坤, 罗先熔, 文美兰 , 等. 地电提取测量法在黑龙江金厂外围区寻找隐伏金矿的应用[J]. 桂林理工大学学报, 2015,35(4):809-816.
[8] Yang L K, Luo X R, Wen M L , et al. Application of geoelectric extraction method on prospecting for hidden gold deposit in peripheral area of Jinchang, Heilongjiang[J]. Journal of Guilin University of Technology, 2015,35(4):809-816.
[9] 康明, 马孟浩 . CHIM 法在区域性勘查阶段的应用研究——以新疆金窝子金矿区为例[J]. 黄金科学技术, 2008,16(1):1-6.
doi: 10.3969/j.issn.1005-2518.2008.01.001
[9] Kang M, Ma M H . Application research on geo-electrochemical method for regional exploration[J]. Gold Science and Technology, 2008,16(1):1-6.
[10] 张有军, 罗先熔, 段焕春 , 等. 地球电化学方法在秦岭柳梢沟金矿找矿预测中的应用[J]. 桂林理工大学学报, 2015,35(3):473-481.
doi: 10.3969/j.issn.1674-9057.2015.03.007
[10] Zhang Y J, Luo X R, Duan H C , et al. Application of geo-electrochemical prospecting method for concealed gold deposit in Liushaogou district of west Qinling Orogen[J]. Journal of Guilin University of Technology, 2015,35(3):473-481.
[11] 王光洪, 罗先熔, 单江涛 , 等. 第四纪沉积物覆盖区地电化学法寻找隐伏金矿——以安徽凤阳地区为例[J]. 桂林理工大学学报, 2010,30(1):52-55.
doi: 10.3969/j.issn.1674-9057.2010.01.008
[11] Wang G H, Luo X R, Shan J T , et al. Geo-electrochemical method for prospecting gold mine in quaternary sediment region case from Fengyang, Anhui[J]. Journal of Guilin University of Technology, 2010,30(1):52-55.
[12] 闫伟, 罗先熔, 张友军 , 等. 地电化学集成技术在江苏仑山金矿找矿预测的应用[J]. 世界地质, 2014,33(3):615-622.
doi: 10.3969/j.issn.1673-9736.2014.03.012
[12] Yan W, Luo X R, Zhang Y J , et al. Application of geo-electrochemical integrated technique in prospecting prediction in Lunshan gold deposit, Jiangsu[J]. Global Geology, 2014,33(3):615-622.
[13] 王振东, 罗先熔, 王坚 , 等. 地电化学技术在青藏高原冻土覆盖区寻找隐伏金矿的研究: 以青海扎加同哪地区为例[J]. 现代矿业, 2012(2):50-55.
[13] Wang Z D, Luo X R, Wang J , et al. Geoelectrochemical study of hidden gold deposits in permafrost region of Qinghai-Tibet plateau-a case study of Zhajiatongna region, Qinghai Province[J]. Modern Mining, 2012, ( 2):50-55.
[14] 单江涛, 罗先熔, 王光洪 , 等. 高原寒冷区地球电化学方法寻找隐伏金矿对比试验[J]. 桂林理工大学学报, 2012,32(4):490-494.
doi: 10.3969/j.issn.1674-9057.2012.04.007
[14] Shan J T, Luo X R, Wang G H , et al. Comparative test of prospecting hidden gold mine in cold plateau area by geoelectrical chemsitry[J]. Journal of Guilin University of Technology, 2012,32(4):490-494.
[15] 高杨, 罗先熔, 朱佳玲 , 等. 地球电化学提取法在高原寒冷区寻找隐伏金矿——以青海格尔木西藏大沟地区为例[J]. 桂林理工大学学报, 2017,37(2):274-279.
doi: 10.3969/j.issn.1674-9057.2017.02.005
[15] Gao Y, Luo X R, Zhu J L , et al. Geo-electrochemical extraction method for concealed gold deposits in cold plateau district: a case from Xizang ditch in Geermu, Qinghai[J]. Journal of Guilin University of Technology, 2017,37(2):274-279.
[16] 文美兰, 罗先熔, 熊健 , 等. 地电化学法在南澳大利亚寻找隐伏金矿的研究[J]. 地质与勘探, 2010,46(1):153-159.
[16] Wen M L, Luo X R, Xiong J , et al. Electro-geochemical method in the search of concealed gold deposits in South Australia[J]. Geology and Exploration, 2010,46(1):153-159.
[17] 胡新露, 何谋春, 姚书振 . 东秦岭上宫金矿成矿流体与成矿物质来源新认识[J]. 地质学报, 2013,87(1):91-100.
doi: 10.3969/j.issn.0001-5717.2013.01.009
[17] Hu X L, He M C, Yao S Z . New understanding of the source of ore-forming material and fluid in the Shanggong gold deposit, east Qingling[J]. Acta Geologica Sinica, 2013,87(1):91-100.
[18] 常云真, 李永超, 徐文超 , 等. 河南省崤山地区综合信息找矿模型及靶区预测[J]. 世界地质, 2017,36(2):530-540.
doi: 10.3969/j.issn.1004-5589.2017.02.019
[18] Chang Y Z, Li Y C, Xu W C , et al. Prospecting model and target prediction of synthesize information in Xiaoshan area, Henan[J]. Global Geology, 2017,36(2):530-540.
[19] 刘军, 武广, 陈方伍 , 等. 河南省石寨沟金矿床成矿流体特征及硫铅同位素研究. 中国地质, 2012,39(6):1798-1811.
doi: 10.3969/j.issn.1000-3657.2012.06.025
[19] Liu J, Wu G, Chen F W , et al. Fluid inclusion and S, Pb isotope study of the Shizhaigou gold deposit in Henan Province[J]. Geology in China, 2012,39(6):1798-1811.
[20] 陈书中, 喻广建 . 河南石寨沟金矿床地质特征及成因探讨[J].华北国土资源, 2010(2):1-3.
doi: 10.3969/j.issn.1672-7487.2010.02.001
[20] Chen S Z, Yu G J . Geological characteristics and genesis of the Shizhaigou gold deposit, Henan Province[J]. Huabei Land and Resources, 2010(2):1-3.
[21] 叶杰, 李滨 . 河南洛宁石寨沟金矿床物质组分及金赋存状态研究[J]. 地质学刊, 2014,38(1):135-139.
doi: 10.3969/j.issn.1674-3636.2014.01.135
[21] Ye J, Li B . Material components and occurrence states of gold in Shizaigou gold deposit in Luoning of Henan[J]. Journal of Geology, 2014,38(1):135-139.
[22] 刘传权 . 洛宁金鸡山金矿庙子河矿区成矿规律及成因浅析[J]. 河南地质, 2000,18(2):87-91.
[22] Liu C Q . A preliminary analysis on the metallogenic regularity and genesis of gold deposits in Miaozihe, Jingjishan, Luoning County[J]. Henan Geology, 2000,18(2):87-91.
[23] 王振凯 . 河南崤山申家窑金矿矿床地球化学研究[D]. 中国地质大学(北京), 2016.
[23] Wang Z K . Geochemical Research on Shenjiayao Gold Deposit in Xiaoshan, Henan Province [D]. China University of Geosciences for Master Degree (Beijing), 2016.
[24] 王晓佳, 鲁美, 王振凯 , 等. 申家窑金矿床地气测量异常特征[J]. 地质与勘探, 2016,52(4):667-677.
[24] Wang X J, Lu M, Wang Z K , et al. Characteristics of geogas anomalies measured in the Shengjiayao gold deposit of Shan County, Henan Province[J]. Geology and Exploration, 2016,52(4):0667-0677.
[25] 王晓佳 . 申家窑金矿床深穿透地球化学研究[D]. 中国地质大学(北京), 2017.
[25] Wang X J . Deep-penetrating geochemical research on Shenjiayao gold deposit [D]. China University of Geosciences for Master Degree (Beijing), 2017.
[26] 李智芳, 罗先熔, 宋艳伟 , 等. 贵州织金矿区地电化学法寻找隐伏铅锌矿的研究及找矿预测[J]. 桂林理工大学学报, 2015,35(4):801-808.
doi: 10.3969/j.issn.1674-9057.2015.04.019
[26] Li Z F, Luo X R, Song Y W , et al. Prediction and prospecting for hidden lead-zinc deposit by geo-electrochemical method in Zhijin mine of Guizhou[J]. Journal of Guilin University of Technology, 2015,35(4):801-808.
[27] 施意华, 杨仲平, 黄俭惠 , 等. ICP-MS测定电吸附找矿泡塑样品中微量元素[J]. 光谱学与光谱分析, 2009,29(6):1687-1690.
[27] Shi Y H, Yang Z P, Huang J H , et al. Determination of trace elements in electrical absorption prospecting polyform sample by Inductively Coupled Plasma Mass Spectrometry[J]. Spectroscopy and Spectral Analysis, 2009,29(6):1687-1690.
[28] 严洪泽, 陈海杰, 孙彬彬 , 等. 湿法消解预处理地电化学泡塑样品有效性研究[J]. 岩矿测试, 2017,36(5):510-518.
[28] Yan H Z, Chen H J, Sun B B , et al. Study on the availability of wet chemical digestion of geo-electrochemical polyurethane foam samples[J]. Rock and Mineral Analysis, 2017,36(5):510-518.
[29] Mandelbrot B B . How long is the coastline of Britain Statistical self-similarity and Fractal Dimension[J]. Science, 1967,155:636-638.
[30] 申维 . 矿化富集动力学模型及其在矿产预测中的应用[J]. 地学前缘, 2000,7(1):189-194.
doi: 10.3321/j.issn:1005-2321.2000.01.018
[30] Shen W . The Dynamics model of metallization enrichment and its applications in mineral resource prediction[J]. Earth Science Frontiers, 2000,7(1):189-194.
[31] 申维 . 分形混沌与矿产预测[M]. 北京: 地质出版社, 2002:8- 10, 46-48.
[31] Shen W. Fractal Chaos and Mineral Prediction [M]. Beijing: Geological Publishing House, 2002:8- 10, 46-48.
[32] Allegre C J, Lewin E . Scaling laws and geochemical distributions[J]. Earth and planetary letters, 1995,132(1-4):1-13.
doi: 10.1016/0012-821X(95)00049-I
[33] 成秋明 . 多维分形理论和地球化学元素分布规律[J]. 地球科学: 中国地质大学学报, 2000,25(3):311-318.
doi: 10.3321/j.issn:1000-2383.2000.03.017
[33] Cheng Q M . Multifractal theory and geochemical element distribution pattern[J]. Earth Science —Journal of China University of Geosciences, 2000,25(3):311-318.
[34] 李湘凌, 张颖慧, 李晓辉 , 等. 分形方法确定土壤中重金属异常下限——以合肥大兴地区 Cu 元素为例[J]. 土壤通报, 2009,40(2):378-381.
[34] Li X L, Zhang Y H, Li X H , et al. Determination of metal elements thresholds in soil with fractal method-a case of Cu in Daxing area, Hefei[J]. Chinese Journal of Soil Science, 2009,40(2):378-381.
[35] 王海欧, 黄顺生 . 多维分形方法在宁镇铜多金属成矿带化探中的应用[J]. 金属矿山, 2012,12:79-83.
doi: 10.3969/j.issn.1001-1250.2012.12.021
[35] Wang H O, Huang S S . Application of multifractal method to the geochemical exploration of Nanjing-Zhenjiang Copper-polymetallic Metallogenic Belt[J]. Metal Mine, 2012,12:79-83.
[36] 柳炳利, 郭科, 王维 , 等. 非线性地球化学矿化元素组合求异方法在西藏洞噶普矿区的应用[J]. 地学前缘, 2012,19(2):256-265.
[36] Liu B L, Guo K, Wang W , et al. The nonlinear methods concerning metallogenic element association for seeking geochemical anomaly in Donggapu mine area, Tibet[J]. Earth Science Frontiers, 2012,19(2):256-265.
[37] 蒙勇, 文件生, 吕宇明 , 等. 广西贵港银山岭铅锌矿土壤地球化学找矿研究[J]. 现代地质, 2011,25(5):67-71.
doi: 10.3969/j.issn.1000-8527.2011.05.022
[37] Meng Y, Wen J S, Lyu Y M , et al. Study on soil geochemical prospection of Lead-zinc Deposit in Yinshanling, Guigang, Guangxi[J]. Geoscience, 2011,25(5):67-71.
[38] 黎彤, 倪守斌 . 塔里木—华北板块的地壳和岩石圈元素丰度[J]. 地质与勘探, 1998,34(1):20-24.
[38] Li T, Ni S B . Element abundances of the crust and Lithosphere in Tarim-North China plate[J]. Geology and Prospecting , 1998,34(1):20-24.
[39] 时艳香, 纪宏金, 陆继龙 , 等. 水系沉积物地球化学分区的因子分析方法与应用[J]. 地质与勘探, 2004,40(5):73-76.
doi: 10.3969/j.issn.0495-5331.2004.05.014
[39] Shi Y X, Ji H J, Lu J L , et al. Factor analysis method and application of stream sediment geochemical partition[J]. Geology and Exploration, 2004,40(5):73-76.
[40] 程培生, 张顺林 . 因子分析在安徽石台—九华山地区成矿预测中的应用[J]. 矿产勘查, 2014,5(4):604-609.
doi: 10.3969/j.issn.1674-7801.2014.04.009
[40] Cheng P S, Zhang S L . Factor analysis application in the metallogenic prediction of Shitai-Jiuhuashan area, Anhui Province[J]. Mineral Exploration, 2014,5(4):604-609.
[41] 梁涛, 卢仁 . 豫西崤山后河岩体的地球化学及锆石稀土元素特征[J]. 现代地质, 2017,31(4):705-715.
[41] Liang T, Lu R . Geochemical characteristics and zircon rare earth elements of Houhe Intrusive complex in Xiaoshan Mountain, western Henan Province[J]. Geoscience, 2017,31(4):705-715.
[42] 卢仁, 梁涛, 卢新祥 , 等. 豫西崤山后河岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质调查与研究, 2013,36(4):263-270.
[42] Lu R, Liang T, Lu X X , et al. LA- ICP-MS zircon U-Pb dating of the Houhe granite and its geologic implication in Xiao Mountain, western Henan Province[J]. Geological Survey and Research, 2017,36(4):263-270.
[43] 卢仁, 梁涛, 卢欣祥 , 等. 豫西崤山龙卧沟岩体锆石 U-Pb年代学、地球化学特征及地质意义[J]. 中国地质, 2014,41(3):756-772.
doi: 10.3969/j.issn.1000-3657.2014.03.006
[43] Lu R, Liang T, Lu X X , et al. Geochronology and geochemical features of Longwogou granite in Xiaoshan Mountain, western Henan Province, and its geologic implications[J]. Geology in China, 2014,41(3):756-772.
[44] 梁涛, 卢仁 . 豫西崤山小妹河岩体 LA -ICP-MS 锆石 U-Pb 定年、地球化学特征及地质意义[J]. 地质通报, 2015,34(8):1526-1540.
[44] Liang T, Lu R . LA-ICP-MS zircon U-Pb dating, geochemical features and geological implications of Xiaomeihe rock mass in Xiaoshan Mountain, western Henan Province[J]. Geological Bulletin of China, 2015,34(8):1526-1540.
[45] 卢仁, 梁涛 . 豫西崤山韩沟岩体锆石 U-Pb定年、地球化学特征及地质意义[J]. 中国地质, 2018,45(1):95-109.
doi: 10.12029/gc201808109
[45] Lu R, Liang T . Zircon U-Pb dating and geochemical features of Hangou granitic body in Xiaoshan Mountain, western Henan Province, and its geologic implications[J]. Geology in China, 2018,45(1):95-109.
[46] 李磊, 孙卫志, 孟宪锋 , 等. 华北陆块南缘崤山地区燕山期花岗岩类地球化学、Sr-Nd-Pb 同位素特征及其地质意义[J]. 岩石学报, 2013,29(8):2635-2652.
[46] Li L, Sun W Z, Meng X F , et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the granitoids of Xiaoshan mountain area on the southern margin of North China block and its geological significance[J]. Acta Petrologica Sinica, 2013,29(8):2635-2652.
[47] 徐文超, 王通, 常云真 , 等. 河南省崤山地区典型金矿床的成矿流体特征及其对进一步找矿工作的启示[J]. 矿产与地质, 2016,30(1):1-11.
doi: 10.3969/j.issn.1001-5663.2016.01.002
[47] Xu W C, Wang T, Chang Y Z , et al. Characteristics of the ore-forming fluid of typical gold deposits in Xiaoshan area of Henan and their enlightenment to further prospecting works[J]. Mineral Resources and Geology, 2016,30(1):1-11.
[48] 刘红涛, 底青云, 薛国强 , 等. 河南省崤山金多金属矿集区控矿构造分析与思考[J]. 地质与勘探, 2018,54(2):230-242.
doi: 10.3969/j.issn.0495-5331.2018.02.002
[48] Liu H T, Di Q Y, Xue G Q , et al. The metamorphic core complex in the Xiaoshan gold-polymetallic concentrating area of Henan Province and its implications for mineral exploration[J]. Geology and Exploration, 2018,54(2):0230-0242.
[49] 钟江文, 彭翼 . 小秦岭地区遥感线性构造密集带与金矿关系分析及找矿预测[J]. 国土资源遥感, 2014,26(2):148-153.
doi: 10.6046/gtzyyg.2014.02.24
[49] Zhong J W, Peng Y . Analysis of relationship between belts of concentrated remote sensing linear structures and gold deposits as well as prospecting prognosis in Xiaoqinling region[J]. Remote Sensing for Land and Resources, 2014,26(2):148-153.
[50] 卢欣祥, 尉向东, 董有 , 等. 小秦岭—熊耳山地区金矿特征与地幔流体[M]. 北京: 地质出版社, 2004.
[50] Lu X X, Wei X D, Dong Y , et al. Characteristics of gold deposits and mantle fluids in Xiaoqinling-Xiong’ershan area[M]. Beijing: geological publishing house, 2004.
[51] 罗铮娴, 黄小龙, 王雪 , 等. 华北克拉通崤山太华群 TTG 质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018,42(2):332-347.
[51] Luo Z X, Huang X L, Wang X , et al. Geochronology and geochemistry of the TTG gneisses from the Taihua group in the Xiaoshan area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia, 2018,42(2):332-347.
[1] 段瑞锋, 袁炳强, 冯旭亮, 强洋洋, 段奔奔, 邢锦程, 刘磊. 基于重、磁、电资料的陕西山阳池沟矿区找矿预测[J]. 物探与化探, 2021, 45(5): 1196-1207.
[2] 窦备, 张必敏, 叶荣, 迟清华. 黄土覆盖区隐伏矿地球化学勘查技术试验研究——以河南中河堤银铅锌多金属矿为例[J]. 物探与化探, 2021, 45(4): 933-941.
[3] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[4] 黄大正, 陈守余, 赵江南, 吴帅吉, 张毓策. 云南个旧老厂矿田东部大比例尺构造地球化学特征及找矿预测[J]. 物探与化探, 2020, 44(6): 1261-1275.
[5] 韩登辉, 高顺宝, 郑有业, 陈鑫, 姜晓佳, 顾艳荣, 燕晨晨. 地球化学数据含量—面积多重分形方法中台阶效应的处理方法[J]. 物探与化探, 2020, 44(6): 1420-1428.
[6] 蔺强强, 郑琪, 苏永红. 黄土覆盖区地气测量有效性评价——以甘肃省通渭县陈贾村地区为例[J]. 物探与化探, 2020, 44(3): 533-539.
[7] 龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
[8] 徐春华, 秦新龙, 崔健, 陈振宁, 肖晓牛, 伍宵, 唐俊, 张雷. 钻孔测井资料在深部找矿预测中的应用——以福建梅仙镇峰岩—谢坑矿区找矿应用为例[J]. 物探与化探, 2018, 42(5): 873-881.
[9] 樊会民, 安兴, 张嘉声, 柏千惠. 陕西省秦巴地区金元素找矿预测区划分及其地球化学特征[J]. 物探与化探, 2018, 42(4): 682-688.
[10] 杜化宇, 李晓禄, 杨玉勤. 长山壕地区金矿航放航磁特征研究[J]. 物探与化探, 2017, 41(3): 421-428.
[11] 姜晓佳, 陈鑫, 郑有业, 高顺宝, 欧阳嵩, 张永超, 郑磊, 黄建. 拉脊山东段地区Au、Cu地球化学组合异常识别与提取[J]. 物探与化探, 2017, 41(3): 459-467.
[12] 李鹏宇, 石文杰, 魏俊浩, 熊乐, 周红智, 尤静静. 青海省兴海县某地区铜多金属找矿潜力评价——基于1:5万土壤化探数据处理与异常信息提取[J]. 物探与化探, 2017, 41(2): 194-202.
[13] 刘攀峰, 文美兰, 张佳莉. 地电化学集成技术在云南西邑铅锌矿区的找矿应用[J]. 物探与化探, 2016, 40(4): 655-660.
[14] 张叶鹏, 王红, 黄朝宇, 肖新星, 杜成额, 刘灿娟. 物探方法在深边部找矿中的有效性探讨——以浏阳市七宝山铜锌矿区为例[J]. 物探与化探, 2016, 40(4): 695-700.
[15] 严己宽. 不同比例尺与介质中化探数据的含量—频数分形研究——以广东大宝山铜多金属矿田为例[J]. 物探与化探, 2016, 40(4): 648-654.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com