Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1309-1319    DOI: 10.11720/wtyht.2019.0325
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
水平电偶极源层状模型垂直磁场全区视电阻率计算方法
伏海涛, 罗维斌(), 丁志军, 余其林, 张世宽
甘肃省有色地质调查院,甘肃 兰州 730000
The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source
Hai-Tao FU, Wei-Bin LUO(), Zhi-Jun DING, Qi-Lin YU, Shi-Kuan ZHANG
Gansu Nonferrous Geological Survey Institute, Lanzhou 730000,China
全文: PDF(4744 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

利用水平电偶极源层状模型电磁场公式系统计算了不同收发距、不同层状地电模型的电磁场分量,给出了由循环互相关法辨识出频率响应,并计算全区视电阻率的方法。利用水平电场Ex分量和垂直磁场Hz分量计算了全区视电阻率,与层状模型大地电磁测深卡尼亚视电阻率和可控源音频大地电磁测深卡尼亚视电阻率进行比较,水平电场Ex分量和垂直磁场Hz分量全区视电阻率均能很好地反映出地电特征,且垂直磁场Hz分量全区视电阻率与层状模型大地电磁测深卡尼亚电阻率在低频段有相似的频率响应特征。对于大埋深基底,Hz分量全区视电阻率在小收发距条件下就能有较好的响应。垂直磁场分量进入近区的频率低于水平电场进入近区的频率,更有利于在小收发距条件下进行大深度勘探。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伏海涛
罗维斌
丁志军
余其林
张世宽
关键词 水平电偶极源层状模型垂直磁场水平电场全区视电阻率    
Abstract

Using the electromagnetic field formula of horizontal electric dipole source on the surface of layered model, the authors calculate electromagnetic field components of different transmitting and receiving distances and different layered geoelectric models systematically. The method for identifying frequency response by circular cross-correlation method and calculating the whole zone apparent resistivity is given. The apparent resistivity of the whole zone is calculated by using the Ex component of horizontal electric field and the Hz component of vertical magnetic field. Compared with the Cagniard apparent resistivity of layered model of magnetotelluric sounding and the Cagniard apparent resistivity of controlled source audio magnetotelluric sounding, the whole zone apparent resistivity of Ex component of horizontal electric field and the Hz component of vertical magnetic field can well reflect the geoelectric characteristics. Moreover, the whole zone apparent resistivity of the vertical magnetic field with the Hz component has similar frequency response characteristics with the Cagniard resistivity of the layered model of magnetotelluric sounding in low frequency band. As for deep buried basement, the whole zone apparent resistivity of the Hz component can respond well under the condition of small transceiver distance. The frequency of the vertical magnetic field component entering the near zone is lower than that of the horizontal electric field entering the near zone, which proves the proposed means is more conducive to deep exploration under the condition of small transceiver distance.

Key wordshorizontal electric dipole source    layered model    vertical magnetic field    horizontal electric field    apparent resistance of the whole region
收稿日期: 2019-06-24      出版日期: 2019-11-28
:  P631  
基金资助:国家自然科学基金项目“相关辨识技术在谱激电中的应用研究”(41374185);中国地震局地震科技星火计划联合资助(XH18046)
通讯作者: 罗维斌
作者简介: 伏海涛(1968-),男,学士学位,主要从事电磁法勘探方面的应用研究工作。Email:1034796069@qq.com
引用本文:   
伏海涛, 罗维斌, 丁志军, 余其林, 张世宽. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309-1319.
Hai-Tao FU, Wei-Bin LUO, Zhi-Jun DING, Qi-Lin YU, Shi-Kuan ZHANG. The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source. Geophysical and Geochemical Exploration, 2019, 43(6): 1309-1319.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0325      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1309
Fig.1  水平电偶极源层状地电模型
层参数 第一层 第二层
电阻率/(Ω·m) 300 20
层厚/m 1100 Inf
m 0 0
τ/s 0 0
c 0 0
Table 1  D型地电模型参数
Fig.2  水平电偶源D型地电模型全区视电阻率频谱
层参数 第一层 第二层
电阻率/(Ω·m) 300 1000
层厚/m 1100 Inf
m 0 0
τ/s 0 0
c 0 0
Table 2  G型地电模型参数
Fig.3  水平电偶源G型地电模型全区视电阻率频谱
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 300 20 700
层厚/m 1200 300 Inf
m 0 0.35 0
τ/s 0 0.12 0
c 0 0.25 0
Table 3  H型地电模型参数
Fig.4  水平电偶源H型地电模型全区视电阻率频谱
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 300 1000 200
层厚/m 1100 400 Inf
m 0 0 0
τ/s 0 0 0
c 0 0 0
Table 4  K型地电模型参数
Fig.5  水平电偶源K型地电模型全区视电阻率频谱
层参数 第一层 第二层 第三层 第四层
电阻率/(Ω·m) 300 1000 10 500
层厚/m 800 400 300 Inf
m 0 0 0.35 0
τ/s 0 0 0.1 0
c 0 0 0.25 0
Table 5  KH型地电模型参数
Fig.6  水平电偶源KH型地电模型不同收发距全区视电阻率频谱
[1] Kaufman A A, Alekseev D, Oristaglio M . Principles of electromagnetic methods in surface geophysics[M]. Elsevier, 2014.
[2] Zhdanov M S . Foundations of geophysical electromagnetic theory and methods[M]. Elsevier, 2017.
[3] Chave A D, Jones A G. The magnetotelluric method: theory and practice[M]. Cambridge University Press, 2012.
[4] Viacheslav V . Spichak. Electromagnetic sounding of the Earth’s interior: theory, modeling, practice(2nd ed)[M]. Elsevier, 2015.
[5] 殷长春 . 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
[5] Yin C C. Aeromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
[6] 周海根 , 多场源地空频率域电磁探测方法研究[D]. 长春:吉林大学, 2017.
[6] Zhou H G . Research on ground-airborne frequency-domain electromagnetic methods with multiple sources[D]. Changchun: Jilin University, 2018.
[7] Richard A. Geyer. Handbook of geophysical exploration at sea(2nd ed) [M]. CRC Press, 2018.
[8] 王若, 殷长春, 王妙月 , 等. CSAMT法一维层状介质灵敏度分析[J]. 地球物理学进展, 2014,29(3):1284-1291,doi: 10.6038/pg20140339.
doi: 10.6038/pg20140339
[8] Wang R, Yin C C, Wang M Y , et al. CSAMT sensitivity analysis for 1D models[J]. Progress in Geophys (in Chinese), 2014,29(3):1284-1291, doi: 10.6038/pg20140339.
[9] 李毓茂 , 等. 电磁频率测深方法与电偶源电磁频率测深量板[M]. 徐州: 中国矿业大学出版社, 2012. 7.
[9] Li Y M , et al. Electromagnetic frequency sounding method and dipole electromagnetic frequency sounding board [M]. Xuzhou: China University of Mining and Technology Press, 2012.
[10] Ziolkowski A, Hobbs B, Wright D . Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007,72(4):197-207.
[11] 底青云, 朱日祥, 薛国强 , 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019,62(6):2128-2138,doi: 10.6038/cjg2019M0633.
[11] Di Q Y, Zhu R X, Xue G Q , et al. New development of the Electromagnetic (EM) methods for deep exploration[J]. Chinese J. Geophys. (in Chinese), 2019,62(6):2128-2138, doi: 10.6038/cjg2019M0633.
[12] 张文伟, 底青云, 雷达 , 等. 物探新方法——多通道瞬变电磁法在金属矿勘探中的应用[J]. 黄金科学技术, 2018,26(1):1-8.
[12] Zhang W W, Di Q Y, Lei D , et al. Multi-channel transient electromagnetic method:a new geophysical method and its application in exploring metallic ore deposits[J]. Gold Science and Technology, 2018,26(1):1-8.
[13] Strack K M . Exploration with deep transient electromagnetic[M]. Elsevier, 1992.
[14] 汤井田, 何继善 . 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[14] Tang J T, He J S. Controlled source audio magnetotelluric method and its application [M]. Changsha, Central South University Press, 2015.
[15] 何继善 . 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[15] He J S. Wide-area electromagnetic method and pseudo-random signal electrical method [M]. Beijing: Higher Education Press, 2010.
[16] 罗维斌, 李庆春, 汤井田 . 编码电磁测深[J]. 地球物理学报, 2012,55(1):341-349, doi: 10.6038/j.issn.0001-5733.2012.01.035.
doi: 10.6038/j.issn.0001-5733.2012.01.035
[16] Luo W B, Li Q C, Tang J T . Coded source electromagnetic sounding method[J]. Chinese J. Geopgys. (in Chinese), 2012,55(1):341-349, doi: 10.6038/j.issn.0001-5733.2012.01.035.
[17] 罗维斌 . 伪随机海洋可控源多道电磁测深法研究[D]. 长沙:中南大学, 2007.
[17] LUO W B . Study on pseudorandom marine controlled-source electromagnetic sounding with multi-offsets[D]. Changsha: Central South University, 2007.
[18] 罗维斌, 汤井田, 韩海涛 , 等. 编码源电磁测深法获取大地全区视电阻率谱的方法及装置,ZL 2016 1 0013962.X[P/OL]. 2018-03-23.
[18] Luo W B, Tang J T, Han H T , et al. The method and device of obtaining whole zone apparent resistivity spectrum of the earth by coded source electromagnetic sounding, ZL 2016 1 0013962.X [P/OL]. 2018-03-23.
[19] 佟铁钢 . E-Hz广域电磁方法研究[D]. 长沙:中南大学, 2010.
[19] Tong T G . E-Hz wide area electromagnetic method research[D]. Changsha: Central South University, 2010.
[20] Chave A D . Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J]. Geophysics, 1983,48(12):1671-1677.
[21] Nielsena T I, Baumgartnera F . CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electro-magnetic surveys[J]. Computers & Geosciences, 2006,32:1411-1419.
[1] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[2] 罗维斌, 丁志军, 高曙德, 张星. 测量磁场水平分量Hy的电性源广域电磁测深法[J]. 物探与化探, 2021, 45(1): 46-56.
[3] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[4] 闫国翔, 尹秉喜, 杨勇. 电性源瞬变电磁全区视电阻率定义[J]. 物探与化探, 2017, 41(5): 933-938.
[5] 蒋邦远, 杜庆丰. TEM中心回线电动势响应换算磁场响应求解全区视电阻率及1-D直接反演的实用方法[J]. 物探与化探, 2017, 41(4): 758-768.
[6] 张银松, 李斌, 张家刘. 瞬变电磁法在水域地质勘察中的应用[J]. 物探与化探, 2016, 40(1): 160-162.
[7] 钟幼生, 韩自强, 罗姣, 冯兵. 关于可控源音频大地电磁法探测深度的探讨[J]. 物探与化探, 2015, 39(4): 768-774.
[8] 蒋邦远. TEM中心回线电动势求解全区视电阻率的实用特性[J]. 物探与化探, 2015, 39(3): 530-536.
[9] 陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2): 358-361.
[10] 郝延松, 胡博, 于润桥, 吴莉佳. 磁性源瞬变电磁法视电阻率计算方法[J]. 物探与化探, 2012, 36(6): 1034-1039.
[11] 杨生. TEM中心回线法计算考虑关断时间的全区视电阻率[J]. 物探与化探, 2008, 32(6): 647-651,664.
[12] 黄力军. 电偶源瞬变电磁测深一维全区视电阻率解释方法研究[J]. 物探与化探, 1995, 19(5): 391-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com