Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1297-1308    DOI: 10.11720/wtyht.2019.0299
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
被动源瑞利波两道法提取频散曲线的质量控制方法
邵广周1, 岳亮1, 李远林1, 吴华2
1. 长安大学 地质工程与测绘学院,陕西 西安 710054
2. 长安大学 理学院,陕西 西安 710064
A study of quality control of extracting dispersion curves by two-channel method of passive Rayleigh waves
Guang-Zhou SHAO1, Liang YUE1, Yuan-Lin LI1, Hua WU2
1. School of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,China
2. School of Science,Chang'an University,Xi'an 710064,China
全文: PDF(4000 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,迅速发展起来的被动源瑞利波勘探技术将环境噪声当做信号源,具有抗干扰能力强、施工条件受限少等优点,更适合于城市周边等地区的勘探工作。而影响被动源方法成像精度的关键因素是频散曲线的提取质量。当前被动源瑞利波法主要根据空间自相关与时域互相关之间的联系,利用Aki公式计算瑞利波频散曲线。该方法对于长周期观测数据(连续几个月以上)具有较好的提取效果,但对于实际工程应用来说,希望数据观测周期越短越好(如一天或几个小时),此时利用Aki法拾取频谱实部曲线零点时,互相关函数频谱会出现零点增多或缺失的现象,导致频散曲线的提取出现误差。文中针对这一问题,通过采用不同的归一化方法、选择不同的时窗长度进行互相关、设置高斯滤波器对互相关函数进行滤波以及筛选频谱零点的处理方法,结合均方误差、相关系数以及信噪比验证频散曲线的可靠性,来控制频散曲线的质量。通过理论模型被动源数值模拟结果试算和陕西凤翔县野外实际噪声数据处理,验证了本文频散曲线质量控制方法的可行性和有效性,对被动源瑞利波法频散曲线提取具有一定的参考价值和实际意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵广周
岳亮
李远林
吴华
关键词 瑞利波频散曲线被动源地震质量控制    
Abstract

In recent years,the rapidly developed passive Rayleigh wave technology has the advantage of strong anti-interference capability and less limited construction conditions by using environmental noise as the source,which is more suitable for exploration in urban areas.However,the key factor affecting the imaging accuracy of the passive source method is the extracting quality of the dispersion curves.The current passive source Rayleigh wave method mainly uses the Aki formula to calculate the Rayleigh wave dispersion curve according to the relationship between spatial autocorrelation and time domain cross-correlation.This method has a good extraction effect for long-period observation data (for several months or more).Nevertheless,for practical engineering applications,it is desirable that the data observation period is as short as possible (such as one day or several hours).Under this circumstance,it will lead the zero points of the cross-correlation spectrum to increase or disappear,which will bring errors in the extraction of the dispersion curves when the Aki method is used to pick up them.Aimed at solving this problem,the authors put forward a set of quality control processes,such as using different normalization methods,selecting different window lengths for cross-correlation operations,setting Gaussian filters to filter cross-correlation functions,and selecting spectral zeros,to improve the extracting quality of dispersion curves.The authors combined certain evaluation criteria to verify the reliability of the dispersion curves and achieved the purpose of controlling the quality of the dispersion curves extraction.The passive source numerical simulation of theoretical model testing and the actual field noise data processing in Fengxiang County of Shaanxi show that the quality control method in the dispersion curve extraction is feasible and effective.This study has certain reference value and practical significance for the dispersion curve extraction of passive source Rayleigh wave method.

Key wordsRayleigh wave    dispersion curve    passive source    quality control
收稿日期: 2019-05-28      出版日期: 2019-11-28
:  P631.4  
基金资助:国家自然科学基金项目(41874123);国家自然科学基金项目(41004043);陕西省自然科学基金项目(2016JM4003);长安大学中央高校基金项目(300102268402);长安大学中央高校基金项目(300102129111);中国地质调查局地质调查项目(DD20160060)
作者简介: 邵广周(1977-),男,副教授,研究生导师,主要从事地震勘探与地球物理信号处理方面的研究工作。Email:shao_gz@chd.edu.cn
引用本文:   
邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
Guang-Zhou SHAO, Liang YUE, Yuan-Lin LI, Hua WU. A study of quality control of extracting dispersion curves by two-channel method of passive Rayleigh waves. Geophysical and Geochemical Exploration, 2019, 43(6): 1297-1308.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0299      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1297
层序号 层厚度
/m
纵波速度
/(m·s-1)
横波速度
/(m·s-1)
密度
/(kg·m-3)
1 4 800 400 2000
2 1200 600 2000
Table 1  两层速度递增模型参数
Fig.1  噪声震源点分布
Fig.2  两层速度递增模型被动源瑞利波地震记录
Fig.3  野外测线排列情况
Fig.4  野外实测背景噪声信号
a—测线6上野外背景噪声信号;b—测线6上主动源地震信号
Fig.5  被动源瑞利波数据处理流程
Fig.6  野外实测背景噪声信号滤波结果
a—原始数据频谱曲线;b—滤波后频谱曲线
Fig.7  时间域归一化处理结果
a—滤波后0~30s的地震信号;b—滤波后信号频谱;c—“one-bit”法处理后的地震信号;d—“one-bit”法处理后的信号频谱;e—滑动绝对平均法处理后的地震信号;f—滑动绝对平均法处理后的信号频谱
Fig.8  频率域白化处理结果
a—“one-bit”法白化后的地震信号;b—“one-bit”法白化后频谱;c—滑动绝对平均法白化后的地震信号;d—滑动绝对平均法白化后信号频谱
道号 1 2 3 4 5 6 7 8 9
one-bit法 25.502 22.875 16.163 24.941 8.827 4.439 5.872 13.765 4.665
滑动绝对平均法 30.723 28.434 18.740 26.238 9.266 4.501 6.907 15.059 5.015
Table 2  白化后互相关结果的信噪比
Fig.9  不同时窗长度对于互相关结果的影响
a—时窗长度为1s的互相关结果;b—时窗长度为3s的互相关结果;c—时窗长度为6s的互相关结果;d—时窗长度为12s的互相关结果
时窗长度/s 1 3 6 12 30 60
信噪比 5.3514 15.0542 12.002 9.154 7.5446 4.642
Table 3  不同时窗长度的信噪比
Fig.10  高斯滤波后的互相关记录
Fig.11  理论模型数据不同m时1~14号检波器对提取得到的频散曲线
Fig.12  理论模型数据只经过部分处理得到的频散曲线
处理方案 均方误差 相关系数
只经历时间域归一化 15.9982 0.7615
只经历频率域归一化 11.6416 0.8852
时频域归一化、滤波等 9.2487 0.9948
Table 4  频散曲线提取结果与理论频散曲线接近程度
Fig.13  野外实测数据不同m值时提取得到的频散曲线
Fig.14  测线6频散曲线
[1] Aki K . Space and tme spectra of stationary stochastic wave,with special reference to microtremors[J]. Bull. Earthq. Res. Inst, 1957,35:415-456.
[2] Claerbout J F . Synjournal of a layered medium from its acoustic transmission response[J]. Geophysics, 1968,33(2):264-269.
[3] Campillo M, Paul A . Long-range correlations in the diffuse seismic coda[J]. Science, 2003,299(5606):547-549.
[4] Shapiro N M, Campillo M . Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004,31(7):L07614.
[5] Bensen G D, Ritzwoller M H, Barmin M P , et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal of the Royal Astronomical Society, 2007,169(3):1239-1260.
[6] Gouédard P, Stehly L, Brenguier F , et al. Cross-correlation of random fields: mathematical approach and applications[J]. 2008,56(3):375-393.
[7] 房立华, 吴建平 . 背景噪声频散曲线测定及其在华北地区的应用[J]. 地震学报, 2009,31(5):544-554.
[7] Fang L H, Wu J P . Measurement of Rayleigh wave dispersion from ambient seismic noise and its application in North China[J]. Acta Seismologica Sinica, 2009,31(5):544-554.
[8] Özalaybey, Serdar, Zor E , et al. Investigation of 3-D basin structures in the I · zmit Bay area (Turkey) by single-station microtremor and gravimetric methods [J]. Geophysical Journal International, 2011,186(2):883-894.
[9] 郑现, 赵翠萍, 周连庆 , 等. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报, 2012,55(6):1919-1928.
doi: 10.6038/j.issn.0001-5733.2012.06.013
[9] Zheng X, Zhao C P, Zhou L Q , et al. Rayleigh wave tomography from ambient noise in central and Eastern Chinese Mainland[J]. Chinese Journal of Geophysics, 2012,55(6):1919-1928.
[10] 徐佩芬, 李世豪, 凌甦群 , 等. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报, 2013,56(11):3846-3854.
doi: 10.6038/cjg20131126
[10] Xu P F, Li S H, Ling S Q , et al. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Chinese Journal of Geophysics, 2013,56(11):3846-3854.
[11] 张宝龙, 李志伟, 包丰 , 等. 基于微动方法研究五大连池火山区尾山火山锥浅层剪切波速度结构[J]. 地球物理学报, 2016,59(10):3662-3673.
[11] Zhang B L, Li Z W, Bao F , et al. Shallow shear-wave velocity structures under the Weishan volcanic cone in Wudalianchi volcano field by microtremor survey[J]. Chinese Journal of Geophysics, 2016,59(10):3662-3673.
[12] 徐佩芬, 李传金, 凌甦群 , 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009,52(7):1923-1930.
doi: 10.3969/j.issn.0001-5733.2009.07.028
[12] Xu P F, Li C J, Ling S Q , et al. Mapping collapsed columns in coal mines utilizing Microtremor Survey Methods[J]. Chinese Journal of Geophysics, 2009,52(7):1923-1930.
[13] 徐佩芬, 侍文, 凌苏群 , 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012,55(6):2120-2128.
doi: 10.6038/j.issn.0001-5733.2012.06.034
[13] Xu P F, Si W, Ling S Q , et al. Mapping spherically weathered “Boulders” using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012,55(6):2120-2128.
[14] 付微, 徐佩芬, 凌苏群 , 等. 微动勘探方法在地热勘查中的应用[J]. 上海国土资源, 2012,33(3):71-75.
[14] Fu W, Xu P F, Ling S Q , et al. Application of the microtremor survey method to geothermal exploration[J]. Shanghai Land & Resources, 2012,33(3):71-75.
[15] 吴学明, 王超凡, 高才坤 , 等. 被动源面波法在水电工程勘察中的应用研究[J]. 物探化探计算技术, 2016,38(4):493-500.
[15] Wu X M, Wang C F, Gao C K , et al. Application of passive surface-wave method for Quzika hydropower damsite exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016,38(4):493-500.
[16] 翟法智, 徐佩芬, 潘丽娜 , 等. 宁波轨道交通暗浜勘察物探方法研究[J]. 地球物理学进展, 2017,32(4):1856-1861.
[16] Zhai F Z, Xu P F, Pan L N , et al. Study on geophysical methods of underground silt exploration in Ningbo rail transit[J]. Progress in Geophysics, 2017,32(4):1856-1861.
[17] Gouédard, Pierre, Roux P , et al. Small-scale seismic inversion using surface waves extracted from noise cross correlation [J]. The Journal of the Acoustical Society of America, 2008, 123(3):EL26-EL31.
[18] Tsai V C, Moschetti M P . An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 2010,182(1):454-460 .
[19] Ekström G, Abers G A, Webb S C . Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation[J]. Geophysical Research Letters, 2009,36(18):64-66.
[20] 李欣欣 . 主动源与被动源瑞利波联合成像方法研究[D]. 西安:长安大学, 2017.
[20] Li X X . Study on the joint tomographic method for active and passive source Rayleigh wave data[D].Xi'an:Chang'an University, 2017.
[21] Nakata N, Chang J P, Lawrence J F , et al. Body wave extraction and tomography at Long Beach,California,with ambient-noise interferometry[J]. Journal of Geophysical Research: Solid Earth, 2015,120(2):1159-1173.
[22] Zeng C, Xia J H, Miller R D , et al. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm[J]. Journal of Applied Geophysics, 2011,75(4):648-655.
[23] Knopoff L A . Matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964,54(1):431-438.
[1] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[2] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[3] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[4] 栾明龙. 瞬态瑞利波技术在地基强夯质量检测中的应用效果[J]. 物探与化探, 2020, 44(3): 615-625.
[5] 杨道煌, 刘江平, 程飞, 庞凯旋. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3): 626-634.
[6] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[7] 姜作喜, 张虹, 屈进红, 王志博, 王鑫, 王蓬. 基于交叉点不符值统计的航空重力测量质量评估方法[J]. 物探与化探, 2018, 42(3): 616-623.
[8] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2): 398-404.
[9] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[10] 栾明龙, 魏红, 林万顺. 瞬态瑞利波技术在工程勘察中的应用[J]. 物探与化探, 2012, 36(5): 878-883.
[11] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
[12] 杨小慧, 李德春, 于鹏飞. 煤层中瑞利型槽波的频散特性[J]. 物探与化探, 2010, 34(6): 750-752.
[13] 贾辉, 何正勤, 陈义军, 张辉, 刘国, 孙增伟. 多道瞬态瑞利波法场地数据采集参数实验[J]. 物探与化探, 2010, 34(4): 553-556.
[14] 翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4): 476-481.
[15] 戴天, 厉隽. 瑞利波法检验客运专线湿陷性黄土地基处理效果[J]. 物探与化探, 2009, 33(5): 603-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com