Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1404-1408    DOI: 10.11720/wtyht.2019.0165
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
等值反磁通瞬变电磁法对石膏矿采空区的探测分析
高远
湖南省煤炭地质勘查院,湖南 长沙 410014
The application effect on detecting goaf of gypsum mine by opposing coils transient electromagnetics method
Yuan GAO
Coal Geological Exploration Institute of Hunan Province, Changsha 410014, China
全文: PDF(1020 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究等值反磁通瞬变电磁法对临澧某石膏矿采空区的探测效果,在矿区布置了两条测线进行等值反磁通瞬变电磁法实验。通过两条测线的结果对比可知,在等值反磁通瞬变电磁法的反演电阻率剖面中,不存在采空区的区域电阻率等值线较平缓、呈层状,基本反映了地层的层状特性;存在采空区的区域电阻率等值线呈明显的下凹特性,且电阻率值较低,为低阻异常带。可见,等值反磁通瞬变电磁法对临澧某石膏矿的采空区探测效果较好,能够确定采空区的基本位置,可以在该矿区或类似矿山开展采空区探测工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高远
关键词 等值反磁通瞬变电磁法采空区石膏矿    
Abstract

In order to study the detection effect of opposing coils transient electromagnetics method on the goaf of a gypsum mine in Linli, the author arranged two lines in the mining area for the experiment of opposing coils transient electromagnetics method. A line was arranged in the area without goaf., and the other line was located above the known goaf. By comparing the results of the two lines, it can be seen that, in the inversion resistivity profile of the opposing coils transient electromagnetics method, the resistivity isoline without goaf is gentle and layered, which basically reflects the layered characteristics of the strata. The resistivity isoline with goaf is obviously concave, and the resistivity value is low, which is a low resistivity abnormal zone. It can be seen that the opposing coils transient electromagnetics method is effective in detecting the goaf of a gypsum mine in Linli, and can determine the basic location of the goaf. It can be used to detect goaf of gypsum ore in this gypsum mining area or similar gypsum mining areas.

Key wordsequal and reverse magnetic flux    transient electromagnetics method    goaf    gypsum
收稿日期: 2019-03-25      出版日期: 2019-11-28
:  P631  
作者简介: 高远(1985-),男,湖南宜章人,硕士,工程师,主要从事物探电法、测井的理论与应用研究工作。Email:gyuan998@163.com
引用本文:   
高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019, 43(6): 1404-1408.
Yuan GAO. The application effect on detecting goaf of gypsum mine by opposing coils transient electromagnetics method. Geophysical and Geochemical Exploration, 2019, 43(6): 1404-1408.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0165      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1404
Fig.1  OCTEM装置示意图(引自文献[8])
岩性 电阻率/(Ω·m)
范围 平均值
第四系(粘性土为主) 30~220 145
粉砂质泥岩、含砾泥岩 110~350 260
泥质粉砂岩、粉砂岩 140~650 410
细砂岩 300~2500 1650
石膏岩、硬石膏 1100~5500 3200
泥质白云岩 400~2500 1100
Table 1  勘查区主要岩石电阻率参数统计
Fig.2  HPTEM-18型高精度瞬变电磁系统
Fig.3  S1线OCTEM反演电阻率剖面
Fig.4  S2线OCTEM反演电阻率剖面
[1] 牛之琏 . 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[1] Niu Z L. Principle of time domain electromagnetic method[M]. Chang-sha: Central South University Press, 2007.
[2] 李貅 . 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
[2] Li X. Theory and application of TEM sounding[M]. Xian: Shaanxi Science and Technology Press, 2002.
[3] 薛国强, 潘冬明, 于景邨 . 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5):2187-2192.
[3] Xue G Q, Pan D M, Yu J C . Review the applications of geophysical methods for maping coal-mine voids[J]. Progress in Geophysics, 2018,33(5):2187-2192.
[4] 刘恋, 姜志海, 藏公瑾 . 积水采空区瞬变电磁响应微分解释方法[J]. 地球物理学进展, 2017,32(4):1621-1627.
[4] Liu L, Jiang Z H, Zang G J . Integrated interpretation method of TEM by differential attenuation of response in mined-out area with water[J]. Progress in Geophysics, 2017,32(4):1621-1627.
[5] 薛国强, 于景邨 . 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017,32(1):319-326.
[5] Xue G Q, Yu J Q . New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2018,33(5):2187-2192.
[6] 席振铢, 徐培渊, 龙霞 , 等. 正交水平磁偶源的电磁场分布规律[J]. 地球物理学报, 2011,54(6):1642-1648.
doi: 10.3969/j.issn.0001-5733.2011.06.024
[6] Xi Z Z, Xu P Y, Long X , et al. The electromagnetic field distribution generated from the orthogonal horizontal magnetic dipole source[J]. Chinese Journal of Geophysics, 2011,54(6):1624-1648.
[7] 胡子君, 宋刚, 陈兴朋 , 等. 瞬变电磁低噪声前置放大器研制[J]. 地球物理学进展, 2012,27(6):2704-2709.
doi: 10.6038/j.issn.1004-2903.2012.06.050
[7] Hu Z J, Song G, Chen X P , et al. Resarch on low noise preamplifier of transient electromagnetic instrument[J]. Progress in Geophysics, 2012,27(6):2704-2709.
[8] 席振铢, 龙霞, 周胜 , 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016,59(9):3428-3435.
[8] Xi Z Z, Long X, Zhou S , et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016,59(9):3428-3435.
[9] 高远 . 等值反磁通瞬变电磁法在城镇地质灾害调查中的应用[J]. 煤田地质与勘探, 2018,46(3):152-156.
[9] Gao Y . The application of opposing coils transient electromagnetics method in geological hazard investigation of town[J]. Coal Geology & Exploration, 2018,46(3):152-153.
[10] 王银, 席振铢, 蒋欢 , 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017,41(2):360-363.
[10] Wang Y, Xi Z Z, Jiang H , et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017,41(2):360-363.
[11] 赖刘保, 陈昌彦, 张辉 , 等. 浅层瞬变电磁法在城市道路地下病害检测中的应用[J]. 地球物理学进展, 2016,31(6):2743-2746.
[11] Lai L B, Chen C Y, Zhang H , et al. Application of shallow transient electromagnetic of city road disease[J]. Progress in Geophysics, 2016,31(6):2743-2746.
[12] 周超, 赵思为 . 等值反磁通瞬变电磁法在轨道交通勘探中的应用[J]. 工程地球物理学报, 2018,15(1):60-64.
[12] Zhou C, Zhao S W . The application of opposing coils transient electromagnetics method to exploration of rail transit[J]. Chinese Joural of Engineering Geophysics, 2018,15(1):60-64.
[13] 李有能 . 等值反磁通瞬变电磁法在溶洞堆积体探测中的应用[J]. 铁道勘察, 2017,43(5):96-98.
[13] Li Y N . Application of OCTEM in detecting accumulation body in karst cave[J]. Railway Investigation and Surveying, 2017,43(5):96-98.
[14] 李建平 . 等值反磁通瞬变电磁法在高山隧道施工选线中的应用[J]. 兰州理工大学学报, 2018,44(1):143-147.
[14] Li J P . Application of opposing coils electromagnetometry in route selection for alpine tunnel construction[J]. Journal of Lanzhou Uinversity of Technology, 2018,44(1):143-147.
[15] 彭星亮, 席振铢, 王鹤 , 等. 等值反磁通瞬变电磁法在地质灾害探测中的应用对比[J]. 西部探矿工程, 2018,30(8):147-150.
[15] Peng X L, Xi Z Z, Wang H , et al. Application of opposing coils transient electromagnetic method in geological disasters detection[J]. West-china Exploration Engineering, 2018,30(8):147-150.
[16] 杨建明, 王洪昌, 沙椿 . 基于等值反磁通瞬变电磁法的岩溶探测分析[J]. 物探与化探, 2018,42(4):846-850.
[16] Yang J M, Wang H C, Sha C . An analysis of karst exploration based on opposing coils transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2018,42(4):846-850.
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[3] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[4] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[5] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[6] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
[7] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[8] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[9] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[10] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[11] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[12] 刘杰, 段炜, 王俊, 刘成, 戴国强. 等值反磁通瞬变电磁法在公路隧道塌陷区的探测应用[J]. 物探与化探, 2020, 44(6): 1470-1475.
[13] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[14] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[15] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com