Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (5): 919-927    DOI: 10.11720/wtyht.2017.5.19
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
利用自组织特征映射神经网络和K-means聚类算法挖掘区域化探数据中的地质信息
陈军林1, 彭润民1, 李帅值1, 2, 陈喜财2
1.中国地质大学(北京) 地球科学与资源学院,北京 100083;
2.中国冶金地质总局 第一地质勘查院,河北 廊坊 065201
Self-organizing feature map neural network and K-means algorithm as a data excavation tool for obtaining geological information from regional geochemical exploration data
CHEN Jun-Lin1, PENG Run-Min1, LI Shuai-Zhi1, 2, CHEN Xi-Cai2
1.School of Earth Sciences and Resources,China University of Geosciences (Beijing),Beijing 100083,China;
2.The First Geological Institute of The China Metallurgical Geology Bureau,Langfang 065201,China
全文: PDF(783 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 区域化探数据包含丰富的地质信息,从区域化探数据中挖掘出这些信息,对于区域地质研究具有重要意义。笔者提出了一种利用自组织特征映射网络和K-means聚类算法挖掘区域化探数据中地质信息的方法,将标准化之后的元素含量数据作为模型输入值,通过自组织神经网络进行聚类,再通过K-means算法进行二次聚类,从聚类结果中分析其中包含的地质信息。以英格兰西南部某区水系沉积物区域化探数据为例,进行实例研究以检验该方法的实际效果。实例结果表明:①利用该方法得出的聚类结果图很好地响应了地质体的空间分布,可用于推断地质体的分布特征;②地质信息隐藏在每个聚类类型的地球化学特征之中,通过对这些特征进行分析和解释,可以挖掘出其中所包含的信息;③基于SOM网络和K-means聚类的区域化探数据挖掘方法是一种有效的地质信息获取方法,对于传统区域地质研究可以起到补充和增强的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Regional geochemical data contain abundant geological information.The excavation of useful information from regional geochemical data is of important significance for the study of regional geology.In this paper,a model based on the self-organizing feature map and K-means algorithm is applied as a data excavation tool to discover hidden geological information from regional geochemical exploration data.For each data point,the raw data of each element is transformed by data normalization as the input value of the model.By means of SOM clustering and K-means clustering as the second step,the input data points can be divided into different groups,and then geological information can be acquired by analyzing the clustering results.Stream sediment survey data from southwest England is used as an example to test the performance of this model.The case study results demonstrate that:First,the clustering maps generated by the model agree well with the geological spatial distribution pattern.Accordingly,they can be used to predict the spatial distribution of geological bodies;Second,geological information is concealed in each cluster member.By analyzing and interpreting these geochemical characteristics, the geological information concealed in geochemical data can be discovered;Third,regional geochemical data excavation approach based on SOM network and K-means clustering is an effective geological information acquisition method,which can be used as a supplementary and strengthening way for conventional regional geology research.
收稿日期: 2016-08-29      出版日期: 2017-10-20
:  P632  
基金资助:国家重点研发计划“深地资源勘查开采”重点专项(2016YFC0600502)
作者简介: 陈军林(1988-),男,博士研究生,研究方向为矿产资源勘查与评价。
引用本文:   
陈军林, 彭润民, 李帅值, 陈喜财. 利用自组织特征映射神经网络和K-means聚类算法挖掘区域化探数据中的地质信息[J]. 物探与化探, 2017, 41(5): 919-927.
CHEN Jun-Lin, PENG Run-Min, LI Shuai-Zhi, CHEN Xi-Cai. Self-organizing feature map neural network and K-means algorithm as a data excavation tool for obtaining geological information from regional geochemical exploration data. Geophysical and Geochemical Exploration, 2017, 41(5): 919-927.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.5.19      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I5/919
[1] Rose A W,Hawkes H E,Webb J S.Geochemistry in mineral exploration[M].2 nd ed. London:Academic Press,1979.
[2] Green P M.Digital image-processing of integrated geochemical and geological information[J].Journal of the Geological Society,1984,141(5):941-949.
[3] Steenfelt A.Geochemical mapping and prospecting in Greenland —A review of results and experience[J].Journal of Geochemical Exploration,1987,29(1-3):183-205.
[4] Shepherd A,Harvey P K,Leake R C.The geochemistry of residual soils as an aid to geological mapping:A statistical approach[J].Journal of Geochemical Exploration,1987,29(1-3):317-331.
[5] Steenfelt A.Geochemical patterns related to major tectono-stratigraphic units in the Precambrian of northern Scandinavia and Greenland[J]. Journal of Geochemical Exploration,1990,39(1-2):35-48.
[6] 刘德鹏,丁峰,汤正江.区域化探在森林沼泽区地质填图应用初探[J].物探与化探,2004,28(3):209-212,217.
[7] 马晓阳,白显清,臧晓凡,等.黑龙江沙兰站幅森林沼泽区基础地质调查中的区域化探新方法[J].物探与化探,2005,29(2):108-110.
[8] 史长义,任院生.区域化探资料研究基础地质问题[J].地质与勘探,2005,41(3):53-58.
[9] 郝立波,陆继龙,马力.浅覆盖区土壤化学成分与基岩化学成分的关系及其意义——以大兴安岭北部地区为例[J].中国地质,2005,32(3):477 482.
[10] 郝立波,陆继龙,李龙,等.区域化探数据在浅覆盖区地质填图中的应用方法研究[J].中国地质,2007,34(4):710-715.
[11] 时艳香,郝立波,陆继龙,等.因子分类法在黑龙江塔河地区地质填图中的应用[J].吉林大学学报:地球科学版,2008,38(5):899-903.
[12] Barnett C T,Williams P M.Using geochemistry and neural networks to map geology under glacial cover[R].Addendum #2 to Geoscience BC Report 2009-3.Boulder,Colorado:BWMINING,2010.
[13] 向运川,龚庆杰,刘荣梅,等.区域地球化学推断地质体模型与应用——以花岗岩类侵入体为例[J].岩石学报,2014,30(9):2609-2618.
[14] Sadeghi M,Billay A,Carranza E J M.Analysis and mapping of soil geochemical anomalies: Implications for bedrock mapping and gold exploration in Giyani area, South Africa[J].Journal of Geochemical Exploration,2015,154:180-193.
[15] 高洪生,张全,曹淑萍,等.区域化探中利用三元图进行地质体划分及异常评价[J].物探与化探,2014,38(2):377-384.
[16] 徐国志,徐锦鹏,段玲玲.化探资料在地质填图中的应用[J]. 物探与化探,2015,39(3):450-455.
[17] Vriend S P,van Gaans P F M,Middelburg J,et al.The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: examples from Portugal[J].Applied Geochemistry,1988,3(2):213-224.
[18] Rantitsch G.Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry[J].Journal of Geochemical Exploration,2000,71(1):73-82.
[19] Ghanbari Y,Hezarkhani A,Ataei M,et al.Regional geochemical pattern recognition with multivariate correspondence cluster analysis in the Ravar area, Iran[J].Applied Earth Science,2010,119(4):220-226.
[20] Shiva M,Aryafar A,Zaremotlagh S.Fuzzy c-means cluster analysis, a robust multivariate technique in stream sediment geochemical exploration,a case study in Eastern part of Iran,Birjand[J].Journal of Geology and Mining Research,2011(1):1-6.
[21] Abedi M,Norouzi G H,Torabi S A.Clustering of mineral prospectivity area as an unsupervised classification approach to explore copper deposit[J].Arabian Journal of Geosciences,2013,6(10):3601-3613.
[22] Templ M,Filzmoser P,Reimann C.Cluster analysis applied to regional geochemical data: Problems and possibilities[J].Applied Geochemistry,2008,23(8):2198-2213.
[23] Kohonen T.Self-organized formation of topologically correct feature maps[J].Biological Cybernetics,1982,43(1):59-69.
[24] Kohonen T,Honkela T.Kohonennetwork[J].Scholarpedia,2007,2(1):83-100.
[25] Wehrens R,Buydens L M C.Self-and Super-organizing Maps in R:The kohonenPackage[J].Journal of Statistical Software,2007,21(5):1-19.
[26] Vesanto J,Alhoniemi E.Clustering of the self-organizing map[J].IEEE Transactions on Neural Networks,2000,11(3):586-600.
[27] 栾龙源.基于自组织神经网络与模糊算法的彩色图像聚类分割系统[D].西安:西安电子科技大学,2010:1-56.
[28] Sun Y.On quantization error of self-organizing map network[J].Neurocomputing,2000,34(1-4):169-193.
[29] Kohonen T.Self-organizing maps[M].Berlin Heidelberg:Springer,2001.
[30] Neme A,Miramontes P.Statistical properties of lattices affect topographic error in self-organizing maps[C]//Duch W,Oja E,Zadrozny S.Artificial Neural Networks:Biological Inspirations — ICANN 2005,15 th ,International Conference,Warsaw,Poland, September 11-15,2005,Proceedings,Part Ⅰ.Berlin Heidelberg:Springer,2005:427-432.
[31] 周欢,李广明,张高煜.SOM+K-means两阶段聚类算法及其应用[J].现代电子技术,2010,33(16):113-116.
[32] Hartigan J A,Wong M A.Algorithm AS 136:A k-means clustering algorithm[J].Journal of the Royal Statistical Society.Series C (Applied Statistics),1979,28(1):100-108.
[33] Davies D L,Bouldin D W.A Cluster Separation Measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,PAMI-1(2):224-227.
[34] Xie X L,Beni G.A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):841-847.
[35] Dunn J C.Well-Separated Clusters and Optimal Fuzzy Partitions[J].Journal of Cybernetics,1974,4(1):95-104.
[36] 吴夙慧,成颖,郑彦宁,等.K-means算法研究综述[J].现代图书情报技术,2011,27(5):28-35.
[37] Shail R K,Leveridge B E.The Rhenohercynian passive margin of SW England:Development,inversion and extensional reactivation[J].ComptesRendus Geoscience,2009,341(2-3):140-155.
[38] Kirkwood C,Everett P,Ferreira A,et al.Stream sediment geochemistry as a tool for enhancing geological understanding:An overview of new data from south west England[J].Journal of Geochemical Exploration,2016,163:28-40.
[39] 金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展,2003,21(1):99-106.
[40] 余烨,张昌民,李少华,等.元素地球化学在层序识别中的应用[J].煤炭学报,2014,39(s1):204-211.
[41] 郑一丁,雷裕红,张立强,等.鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J].天然气地球科学,2015,26(7):1395-1404.
[42] 刘英俊,曹励明,李兆鳞,等.元素地球化学[M].北京:科学出版社,1984:170-235.
[43] Simons B,Shail R K,Andersen J C Ø.The petrogenesis of the early permian variscan granites of the cornubian batholith:lower plate post-collisional peraluminous magmatism in the rhenohercynian zone of SW england[J].Lithos,2016,260:76-94.
[44] Beese A P.The argillite facies of the middle devonian succession in north cornwall[J].Proceedings of the Ussher Society,1982,5:321-332.
[45] Tjhai G C,Furnell S M,Papadaki M,et al.A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm[J].Computers & Security,2010,29(6):712-723.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com