Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (3): 392-401    DOI: 10.11720/wtyht.2017.3.02
  地质调查资源勘查方法应用 本期目录 | 过刊浏览 | 高级检索 |
SEDEX型矿床研究现状及进展
翟玉林, 魏俊浩, 李艳军, 李翔, 柯坤家
中国地质大学(武汉) 资源学院,湖北 武汉 430074
Present situation and research progress of the SEDEX deposit
ZHAI Yu-Lin, WEI Jun-Hao, LI Yan-Jun, LI Xiang, KE Kun-Jia
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
全文: PDF(1761 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 SEDEX型矿床是一类很重要的矿床,提供了世界上约60%的铅和50%的锌。通过全面参阅前人研究成果及相关文献,系统概述了SEDEX型矿床的成矿构造背景和地质特征,结合国内典型矿床的S、Pb、H、O及B同位素,从地球化学方面综合分析探讨了SEDEX型矿床成矿物质和流体来源,在已有成矿模式的基础上,进一步完善了成矿作用过程和机制。最后,简单介绍了近年来SEDEX型矿床研究新进展,并对存在的问题和今后发展趋势提出了一些建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Sedimentary exhalative deposits (SEDEX) are an important kind of ore deposits, and provide about 60% of the lead and 50% of the zinc in the world. In this paper, based on consulting previous and the latest research achievements, reading relevant literatures and synthesizing the different theories, the authors summarize the ore-forming tectonic setting and geological characteristics and, in combination with S, Pb, H, O and B isotopes, discuss the sources of ore-forming materials and fluids in terms of geochemistry. Based on former metallogenic model, the authors further improve the mineralization mechanism. In the end, this paper describes the new research progress, and gives some suggestions for the existent problems and development trends in the future.
收稿日期: 2016-06-08      出版日期: 2017-06-20
:  P632  
基金资助:国家自然科学基金项目(41672083,41202054)
通讯作者: 魏俊浩(1961-),教授,博士生导师,主要从事矿床地球化学、成矿规律与成矿预测研究工作。E-mail: junhaow@163.com
作者简介: 翟玉林(1989-),男,现正攻读矿产普查与勘探专业硕士学位,主要从事矿产勘查研究工作。
引用本文:   
翟玉林, 魏俊浩, 李艳军, 李翔, 柯坤家. SEDEX型矿床研究现状及进展[J]. 物探与化探, 2017, 41(3): 392-401.
ZHAI Yu-Lin, WEI Jun-Hao, LI Yan-Jun, LI Xiang, KE Kun-Jia. Present situation and research progress of the SEDEX deposit. Geophysical and Geochemical Exploration, 2017, 41(3): 392-401.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.3.02      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I3/392
[1] 田毓龙,秦德先,林幼斌,等.喷流热水沉积矿床研究的现状与进展[J].昆明理工大学学报,1999, 24(1): 156-162.
[2] 颜文.喷流矿床(Exhalative deposits)研究综述[J].地质地球化学, 1993, 21(6): 15-20.
[3] 班建永.MVT型矿床与SEDEX型铅锌矿床对比研究[J].西部探矿工程, 2013,25(11): 185-190.
[4] 韩发,孙海田.Sedex型矿床成矿系统[J].地学前缘, 1999, 6(1): 140-163.
[5] 罗俊杰,张建芳.Sedex型矿床地质特征及成矿物质来源示踪[J].资源环境与工程, 2010, 24(1): 36-40.
[6] 黄志伟.喷流沉积型铅锌矿床的主要控矿构造[J].西部探矿工程, 2013, 25(10): 154-157.
[7] 汪明,左慧,石富文,等.广西大厂锡多金属矿床研究综述[J].西部探矿工程, 2014, 26(01): 167-170.
[8] 古志宏,赵俊兴,周永章,等.西秦岭厂坝—李家沟铅锌矿矿床地质特征和成因分析[J].中山大学研究生学刊:自然科学、医学版,2007, 28(3): 40-46.
[9] 彭润民,翟裕生,韩雪峰,等.内蒙古狼山造山带构造演化与成矿响应[J].岩石学报, 2007, 23(3): 679-688.
[10] Holland H D.100 th anniversary special paper: Sedimentary mineral deposits and the evolution of earth��s near-surface environments[J].Economic Geology, 2005, 100(8): 1489-1509.
[11] Betts P G, Lister G S.Geodynamically indicated targeting strategy for shale-hosted massive sulfide Pb-Zn-Ag mineralisation in the Western Fold Belt, Mt Isa terrane[J].Australian Journal of Earth Sciences, 2002, 49(6): 985-1010.
[12] Betts P G, Giles D, Lister G S.Tectonic environment of shale-hosted massive sulfide Pb-Zn-Ag deposits of proterozoic northeastern Australia[J].Economic Geology and the Bulletin of the Society of Economic Geologists, 2003, 98(3): 557-576.
[13] Lund K.Geometry of the Neoproterozoic and Paleozoic rift margin of western Laurentia: Implications for mineral deposit settings[J].Geosphere, 2008, 4(2): 429-444.
[14] Cooke D R, Bull S W, Large R R, et al.The importance of oxidized brines for the formation of Australian proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits[J].Economic Geology and Bulletin of the Society of Economic Geologists, 2000, 95(1): 1-17.
[15] 池三川.非火山环境海底沉积-喷流(“SEDEX”)矿床[J].地学前缘, 1994, 1(4): 183.
[16] 李英,祁思敬.中国北方超大型热水沉积硫化物矿床成矿模式[J].矿物岩石地球化学通报, 1997, 16(3): 17-20.
[17] 薛春纪,祁思敬,隗合明,等.基础矿床学[M].北京:地质出版社, 2007.
[18] Goodfellow W D, Lydon J W.Sedimentary exhalative (SEDEX) deposits[G]//Goodfellow W D.Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods.Geological Association of Canada, Mineral Deposits Division, Special Publication. 2007:163-183.
[19] Hutchinson R W.层控矿床在地质历史中的地位[J].国外矿床地质, 1988, 1(3): 19-57.
[20] 芮宗瑶.海底喷气沉积矿床研究的新进展[J].国外矿床地质, 1989, 2(2): 1-5.
[21] 张长青,吴越,王登红,等.中国铅锌矿床成矿规律概要[J].地质学报, 2014, 88(12): 2252-2268.
[22] 叶杰,刘建明,张安立,等.沉积喷流型矿化的岩石学证据——以大兴安岭南段黄岗和大井矿床为例[J].岩石学报, 2002, 18(4): 585-592.
[23] 坚润堂,李峰,徐国端.锡铁山SEDEX型铅锌矿床成矿物质来源综述[J].矿产与地质, 2007, 21(6): 642-648.
[24] 祝新友,王莉娟,朱谷昌,等.锡铁山SEDEX铅锌矿床成矿物质来源研究——铅同位素地球化学证据[J].中国地质, 2010, 37(6): 1682-1689.
[25] 朱炳泉.地球科学中同位素体系理论与应用: 兼论中国大陆壳幔演化[M].北京:科学出版社, 1998.
[26] 任鹏,梁婷,刘扩龙,等.秦岭凤太矿集区喷流沉积型铅锌矿床S、Pb同位素地球化学特征[J].西北地质, 2014, 47(1): 137-149.
[27] Zartman R E, Doe B R.Plumbotectonics—the model[J].Tectonophysics, 1981, 75(1): 135-162.
[28] 蒋少涌,杨涛,李亮,等.大西洋洋中脊TAG 热液区硫化物铅和硫同位素研究[J].岩石学报, 2006, 22(10): 2597-2602.
[29] 王彦斌,曾普胜,李延河,等.云南金顶和白秧坪矿床 He, Ar 同位素组成及其意义[J].矿物岩石, 2005, 24(4): 76-80.
[30] 肖新建,倪培.论喷流沉积(SEDEX)成矿与沉积—改造成矿之对比[J].地质找矿论丛, 2000, 15(3): 238-245.
[31] 余金杰,杨海明,叶会寿.霍各乞铜多金属矿床的地质—地球化学特征及矿质来源[J].矿床地质, 1993, 12(1): 67-76.
[32] Taylor B E.Biogenic and thermogenic sulfate reduction in the Sullivan Pb-Zn-Ag deposit, British Columbia (Canada): Evidence from micro-isotopic analysis of carbonate and sulfide in bedded ores[J].Chemical Geology, 2004, 204(3/4): 215-236.
[33] 匡文龙,陈年生,张万虎,等.厂坝—李家沟SEDEX型铅锌矿床成矿作用研究[J].大地构造与成矿学, 2009, 32(4): 542-547.
[34] 俞中辉,祝新友,童随友,等.西成地区铅—锌矿、金矿硫铅同位素特征及成矿关系的研究[J].矿产与地质, 2008, 22(3): 196-203.
[35] 王莉娟,彭志刚,祝新友.青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化[J].矿物学报, 2009(增刊): 257-258.
[36] 张艳,魏平堂.Sedex型Pb-Zn矿床氢氧同位素地球化学综述[J].矿产勘查, 2012, 3(3): 374-378.
[37] 王莉娟,彭志刚,祝新友,等.青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化:流体包裹体及同位素地球化学证据[J].岩石学报, 2009, 25(11): 3007-3015.
[38] 祝朝辉,张乾,朱笑青,等.中国SEDEX型矿床成矿流体硼、硅、氦—氩同位素组成研究评述[J].矿物岩石地球化学通报, 2006, 25(3): 279-284.
[39] Palmer M R, Slack J F.Boron Isotopic Composition of Tourmaline from Massive Sulfide Deposits and Tourmalinites[J].Contributions to Mineralogy and Petrology, 1989, 103(4): 434-451.
[40] 韩发.大厂锡多金属矿床地质及成因[M].北京:地质出版社, 1997.
[41] Jiang S Y.Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study[J].Physics and Chemistry of the Earth Part A-solid Earth and Geodesy, 2001, 26(9/10): 851-858.
[42] 赵葵东,蒋少涌,肖红权,等.大厂锡—多金属矿床成矿流体来源的He同位素证据[J].科学通报, 2002, 47(8): 632-635.
[43] 薛春纪,陈毓川,王登红,等.滇西北金顶和白秧坪矿床:地质和He,Ne,Xe同位素组成及成矿时代[J].中国科学D辑:地球科学, 2003, 33(4): 315-322.
[44] Russell M J, Solomon M, Walshe J L.The Genesis of Sediment[J].Mineralium Deposita, 1981, 16(1): 113-127.
[45] 王炜,鲍征宇,李璇,等.SEDEX型矿床地质地球化学特征及研究趋势[J].物探与化探, 2010, 34(4): 415-421.
[46] 詹胜强,杨伟.盆地流体运移与成矿浅谈——以SEDEX矿床为例[J].四川有色金属, 2010, 25(4): 11-14.
[47] Li H, Xi X.Sedimentary fans: A new genetic model for sedimentary exhalative ore deposits[J].Ore Geology Reviews, 2015, 65(1): 375-389.
[48] 王玉奇.Sedex型矿床与VMS型矿床对比研究[J].资源环境与工程, 2009, 23(3): 259-262.
[49] Powell R, Downes J.Garnet porphyroblast-bearing leucosomes in metapelites: mechanisms, phase diagrams, and an example from Broken Hill, Australia[G]//High-temperature metamorphism and crustal anatexis, Springer, 1990:105-123.
[50] Sparks H A, Mavrogenes J A.Sulfide melt inclusions as evidence for the existence of a sulfide partial melt at Broken Hill, Australia[J].Economic Geology, 2005, 100(4): 773-779.
[51] 康欢,江思宏.澳大利亚布罗肯希尔(Broken Hill)铅锌银矿床[J].矿床地质, 2015, 34(6): 1346-1349.
[52] Moore D W, Young L E, Modene J S, et al.Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska[J].Economic Geology, 1986, 81(7): 1696-1727.
[53] Leach D L, Marsh E, Emsbo P, et al.Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks range, Alaska[J].Economic Geology, 2004, 99(7): 1449-1480.
[54] 张辉,徐九华,成曦晖.美国阿拉斯加红狗铅锌矿床地质特征及成矿模式[J].地质通报, 2015, 34(6): 1011-1025.
[55] 付超,王建平,彭润民,等.内蒙古甲生盘铅锌硫矿床铅同位素组成及其对成矿物质来源的示踪意义[J].中国地质, 2010, 37(6): 1690-1698.
[56] 彭润民,翟裕生.内蒙古狼山—渣尔泰山中元古代被动陆缘热水喷流成矿特征[J].地学前缘, 2004, 11(1): 257-268.
[57] 胡乔青,王义天,王瑞廷,等.西秦岭凤太矿集区八方山—二里河铅锌(铜)矿床成矿地质特征与矿床成因探讨[J].地质与勘探, 2013, 49(1): 99-112.
[58] 冯志强,林丽,刘永江,等.西秦岭造山带东段喷流沉积型铅锌矿床特征及其成矿模式——以徽县洛坝矿床为例[J].吉林大学学报:地球科学版,2013, 43(6): 1799-1811.
[59] 祝新友,邓吉牛,王京彬,等.锡铁山矿床两类喷流沉积成因的铅锌矿体研究[J].矿床地质, 2006, 25(3): 252-262.
[60] 祝新友,邓吉牛,王京彬,等.锡铁山喷流沉积矿床卤水与海水的相互作用[J].地质论评, 2007, 53(1): 52-64.
[61] 祝新友,邓吉牛,王京彬,等.锡铁山铅锌矿床的找矿潜力与找矿方向[J].地质与勘探, 2006, 42(3): 18-23.
[62] 刘耀辉,吴烈善,莫江平,等.锡铁山铅锌矿床流体包裹体特征及成矿环境研究[J].地质与勘探, 2006, 42(6): 47-51.
[63] 李朝阳,王京彬,肖荣阁,等.滇西地区陆相热水沉积成矿作用[J].铀矿地质, 1993, 9(1): 14-22.
[64] 徐克勤,王鹤年,周建平,等.论华南喷流—沉积块状硫化物矿床[J].高校地质学报, 1996, 2(3): 2-17.
[65] 赵准.兰坪金顶铅锌矿——陆相SEDEX型矿床[J].云南地质, 2007, 26(1): 1-14.
[66] 杨建文,冯佐海,罗先熔,等.论浮力对热液喷发型(SEDEX)矿床成矿的作用:以澳大利亚北部为例[J].中国科学D辑:地球科学,2009, 39(5): 594-601.
[67] Sangster D F, Scott S D.Precambrian strata-bound, massive Cu-Zn-Pb sulfide ores of North America[G]//Wolf K H.Handbook of strata-bound and stratiform ore deposits, Elsevier,1976: 129-222.
[68] Hutchinson R W.Volcanogenic sulfide deposits and their metallogenic significance[J].Economic Geology, 1973, 68(8): 1223-1246.
[69] Hutchinson R W.Massive base metal sulphide deposits in sedimentary rocks and their metallogenic relationships during Proterozoic time[C]//Paper presented at joint meeting of AIME-SEG, Chicago,1973, 68: 138.
[70] 姚书振,丁振举,周宗桂,等.秦岭造山带金属成矿系统[J].地球科学: 中国地质大学学报, 2002, 27(5): 599-604.
[71] 何进忠,姚书振,彭德启.西秦岭铅锌矿区域地球化学成矿预测模式[J].物探与化探, 2006, 30(6): 488-492.
[72] 张德全,王富春,李大新,等.柴北缘地区的两类块状硫化物矿床——Ⅰ.锡铁山式SEDEX型铅锌矿床[J].矿床地质, 2005, 24(5): 4-13.
[73] 杨竹森,吕庆田,曾普胜,等.安徽铜陵冬瓜山大型铜矿:海底喷流—沉积与矽卡岩化叠加复合成矿过程[J].地质学报, 2011, 85(5): 659-686.
[74] 郭维民,陆建军,蒋少涌,等.安徽铜陵新桥矿床下盘矿化中黄铁矿Re-Os同位素定年:海底喷流沉积成矿的年代学证据[J].科学通报, 2011, 56(36): 3023-3028.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com