|
|
Spatial distribution of the soil trace elements in Hailun City |
LI Qiu-Yan1,2,3( ), ZHANG Yi-He1,2,3( ), WEI Ming-Hui1,2,3, HE Peng-Fei1,2,3 |
1. Shenyang Center of China Geological Survey, Shenyang 110034, China 2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China 3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China |
|
|
Abstract Based on the measured contents of the main trace elements (B, Cu, Mn, Mo, and Zn) in 1175 surface soil samples (sampling depth: 0~20 cm), this study analyzed the contents and spatial distribution characteristics of the trace elements in the soil in Hailun City using both geostatistics and geographic information system (GIS). The results are as follows. The surface soil in the city is deficient in B and Mo. Elements Mn and Mo in the surface soil have nugget-to-sill ratios greater than 75%, with weak spatial autocorrelation. Elements B, Cu, and Zn in surface soil have nugget-to-sill ratios of 25%~75%, with moderate spatial correlation, and their spatial variations are mainly affected by natural factors. Elements B and Cu in the surface soil have similar spatial distribution, with the contents gradually decreasing from the center to the surroundings of the city. The Mn and Mo contents in the surface soil show an obvious zonal distribution, and the Zn content is higher in the north than in the south. There are both symbiotic and antagonistic relationships among trace elements. The soil organic matter content, soil parent materials, soil type, and land uses have different effects on the trace elements in the surface soil in the city.
|
Received: 28 January 2022
Published: 03 January 2023
|
|
Corresponding Authors:
ZHANG Yi-He
E-mail: 2284435292@qq.com;343847617@qq.com
|
|
|
|
元素 | 分析方法 | 检出限 | B | 发射光谱法(ES) | 0.3′10-6 | Cu | X荧光光谱法(XRF) | 1′10-6 | Mo | 等离子质谱法(ICP-MS) | 0.12′10-6 | Mn | X荧光光谱法(XRF) | 2.1′10-6 | Zn | X荧光光谱法(XRF) | 4′10-6 |
|
The analysis method and detection limit of target elements
|
元素 | 含量范围/10-6 | 平均值/10-6 | 标准差/10-6 | 变异系数/% | 松嫩平原背景值[10]/10-6 | 全国背景值[11]/10-6 | B | 9.5~78.8 | 30.79 | 6.46 | 20.99 | 33.72 | 47.8 | Cu | 16.3~35.8 | 22.75 | 1.67 | 7.33 | 22.55 | 22.6 | Mn | 366~2216 | 732 | 167 | 22.84 | 774 | 583 | Mo | 0.32~1.69 | 0.58 | 0.20 | 34.33 | 0.95 | 2 | Zn | 40.9~106 | 67.02 | 6.95 | 10.37 | 67.87 | 74.2 |
|
Description statistics of trace elements in surface soil
|
|
Trend analysis of soil trace elements
|
元素 | 拟合模型 | 块金值(C0) | 基台值(C0+C) | [C0/(C0+C)]/% | 变程a/km | 拟合度R2 | B | 指数模型 | 0.01550154 | 0.02162 | 71.7 | 633 | 0.689 | Cu | 球状模型 | 1.8513 | 3.025 | 61.2 | 181 | 0.975 | Mn | 高斯模型 | 0.0114639 | 0.01442 | 79.5 | 126 | 0.990 | Mo | 高斯模型 | 0.01972296 | 0.02484 | 79.4 | 121 | 0.992 | Zn | 指数模型 | 17.073 | 32.52 | 52.5 | 21.6 | 0.827 |
|
Theoretical model and parameter of semi-variance function for soil trace elements in Hailun City
|
|
Spatial distribution of trace elements in surface soils
|
成分 | 丰富(一等) | 较丰富(二等) | 中等(三等) | 较缺乏(四等) | 缺乏(五等) | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | B | 4 | 0.09 | 16 | 0.34 | 72 | 1.54 | 2499 | 53.41 | 2088 | 44.62 | Cu | 18.13 | 0.39 | 773.3 | 16.53 | 3368.18 | 71.98 | 519.1 | 11.09 | 0.29 | 0.01 | Mn | 2450 | 52.35 | 1334 | 28.52 | 768 | 16.4 | 123 | 2.64 | 4 | 0.09 | Mo | 462 | 9.87 | 603 | 12.89 | 707 | 15.11 | 1836 | 39.23 | 1071 | 22.9 | Zn | 107 | 2.3 | 885 | 18.91 | 2658 | 56.79 | 1025 | 21.91 | 4 | 0.09 |
|
Statistics of single index evaluation results of soil nutrients
|
指标 | B | Cu | Mn | Mo | Zn | Corg | B | 1 | 0.091** | -0.146** | -0.130** | -0.012 | -0.147** | Cu | | 1 | -0.131** | -0.207** | 0.239** | 0.054 | Mn | | | 1 | 0.740** | 0.352** | 0.539** | Mo | | | | 1 | 0.331** | 0.634** | Zn | | | | | 1 | 0.251** | Corg | | | | | | 1 |
|
Correlation analysis of soil trace elements and organic matter
|
分类 | w(B)/10-6 | w(Cu)/10-6 | w(Mn)/10-6 | w(Mo)/10-6 | w(Zn)/10-6 | 成土母质 | 冰积 | 28.78 | 21.73 | 987 | 0.96 | 71.19 | 冲湖积 | 31.40 | 22.93 | 703 | 0.54 | 66.73 | 冲积 | 29.59 | 22.68 | 725 | 0.55 | 65.27 | 坡洪积 | 30.42 | 23.16 | 664 | 0.49 | 66.69 | 土壤类型 | 暗棕壤 | 28.04 | 21.76 | 965 | 0.90 | 70.43 | 草甸土 | 30.62 | 22.83 | 728 | 0.57 | 66.83 | 黑土 | 31.41 | 22.85 | 690 | 0.53 | 66.46 | 土地利用类型 | 草地 | 31.31 | 22.62 | 772 | 0.57 | 66.43 | 林地 | 28.62 | 21.44 | 987 | 0.96 | 71.73 | 旱地 | 31.25 | 22.88 | 688 | 0.53 | 66.22 | 沼泽 | 29.12 | 22.50 | 837 | 0.69 | 68.80 | 水田 | 28.06 | 23.53 | 708 | 0.52 | 66.44 |
|
Average contents of trace elements in soils of different soil parent materials,soil types and land use patterns
|
[1] |
郑新如, 潘爱芳, 马润勇, 等. 石泉县中部地区土壤微量营养元素空间分布特征[J]. 干旱区资源与环境, 2021, 35(2):183-189.
|
[1] |
Zheng X R, Pan A F, Ma R Y, et al. Spatial distribution characteristics of soils micronutrient in central region of Shiquan County[J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 183-189.
|
[2] |
潘方杰, 王宏志, 王璐瑶, 等. 湖北省土壤微量元素县域分异特征及其与健康相关性[J]. 华中师范大学学报:自然科学版, 2019, 53(1):137-146.
|
[2] |
Pan F J, Wang H Z, Wang L Y, et al. Differential characteristics of soil trace elements and their correlation with health in Hubei Province[J]. Journal of Central China Normal University:Nat. Sci., 2019, 53(1): 137-146.
|
[3] |
严明书, 黄剑, 何忠庠, 等. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1):199-205,219.
|
[3] |
Yan M S, Huang J, He Z X, et al. The influence of geological background on trace elements of soil:A case study of Yubei area[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 199-205, 219.
|
[4] |
武婕, 李玉环, 李增兵, 等. 南四湖区农田土壤有机质和微量元素空间分布特征及影响因素[J]. 生态学报, 2014, 34(6):1596-1605.
|
[4] |
Wu J, Li Y H, Li Z B, et al. Spatial distribution and influencing factors of farmland soil organic matter and trace elements in the nansihu region[J]. Acta Ecologica Sinica, 2014, 34(6): 1596-1605.
|
[5] |
曾妍妍, 周金龙, 王松涛, 等. 新疆民丰县中部地区土壤微量营养元素空间分布特征[J]. 干旱区资源与环境, 2018, 32(7):76-81.
|
[5] |
Zeng Y Y, Zhou J L, Wang S T, et al. The spatial distribution characteristics of soils micronutrients in central region of Minfeng County, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2018, 32(7): 76-81.
|
[6] |
Foroughifar H, Jafarzadeh A A, Torabi H, et al. Using geostatistics and geographic information system techniques to characterize spatial variability of soil Properties, including micronutrients[J]. Communications in Soil Science and Plant Analysis, 2013, 44(8): 1273-1281.
|
[7] |
中华人民共和国国土资源部. DZ/T 0258—2014多目标区域地球化学调查规范(1:250000)[S]. 北京: 中国标准出版社, 2014.
|
[7] |
Ministry of Land and Resources, PRC. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey (1:250000)[S]. Beijing: Geological Publishing House, 2014.
|
[8] |
谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3): 768-774.
|
[8] |
Xie X J, Kang J C, Li W J, et al. Analysis on heavy metal concentrations in agricultural soils of Baoshan, Shanghai[J]. Environmental Science, 2010, 31(3): 768-774.
|
[9] |
李秋燕, 魏明辉, 戴慧敏, 等. 锦州市土壤重金属污染特征及生态风险评价[J]. 地质与资源, 2021, 30(4):465-472.
|
[9] |
Li Q Y, Wei M H, Dai H M, et al. Heavy metal pollution characteristics and ecological risk analysis for soil in Jinzhou City[J]. Geology and Resources, 2021, 30(4): 465-472.
|
[10] |
戴慧敏, 刘国栋. 东北黑土地1:25万土地质量地球化学调查[R]. 沈阳:中国地质调查局沈阳地质调查中心, 2019.
|
[10] |
Dai H M, Liu G D. Northeast black soil 1:250,000 land quality geochemical survey[R]. Shenyang: Shenyang Geosurvey Center CGS, 2019.
|
[11] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007:82-83.
|
[11] |
Chi Q H, Yan M C. Handbook of applied geochemical element abundance data[M]. Beijing: Geological Publishing House, 2007:82-83.
|
[12] |
李瑞平, 姜咏栋, 李光德, 等. 基于GIS的农田土壤重金属空间分布研究——以山东省泰安市为例[J]. 山东农业大学学报:自然科学版, 2012, 43(2):232-238.
|
[12] |
Li R P, Jiang Y D, Li G D, et al. The spatial distribution of heavy metals in the cropland based on GIS[J]. Journal of Shandong Agricultural University:Natural Science, 2012, 43(2): 232-238.
|
[13] |
刘庆, 王静, 史衍玺, 等. 基于GIS的农田土壤重金属空间分布研究[J]. 安全与环境学报, 2007(2):109-113.
|
[13] |
Liu Q, Wang J, Shi Y X, et al. On the spatial distribution of heavy metal in the cropland on GIS[J]. Journal of Safety and Environment, 2007(2): 109-113.
|
[14] |
Cambardella C A, Moorman T B, Novak J M. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 1994, 58: 1501-1511.
|
[15] |
Boruvka L, Vacek O, Jehlicka J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma, 2005, 128: 289-300.
|
[16] |
中华人民共和国国土资源部. DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
|
[16] |
Ministry of Land and Resources, PRC. DZ/T 0295—2016 Specification of land quality geochemical assessment[S]. Beijing: Geological Publishing House, 2016.
|
[17] |
方华军, 杨学明, 张晓平, 等. 坡耕地黑土有机碳空间异质性及其格局[J]. 水土保持通报, 2005, 25(3):20-24,28.
|
[17] |
Fang H J, Yang X M, Zhang X P, et al. Spatial heterogeneity and pattern of black soil organic carbon of sloping field[J]. Bulletin of Soil and Water Conservation, 2005, 25(3): 20-24, 28.
|
[18] |
穆桂珍, 罗杰, 蔡立梅, 等. 广东揭西县土壤微量元素与有机质和pH的关系分析[J]. 中国农业资源与区划, 2019, 40(10):208-215.
|
[18] |
Mu G Z, Luo J, Cai L M, et al. Relationship between soil trace elements with organic matter and pH in Jiexi country, Guangdong Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(10): 208-215.
|
[19] |
刘铮, 朱其清, 唐丽华. 我国缺硼土壤的类型和分布[J]. 土壤学报, 1980(3):228-239,300.
|
[19] |
Liu Z, Zhu Q Q, Tang L H. Types and distribution of borondeficient soils in my country[J]. Acta Pedologica Sinica, 1980(3):228-239,300.
|
[20] |
Yermiyahu U, Keren R, Chen Y. Effect of composted organic matter on boron uptake by plants[J]. Soil Science Society of America Journal, 2001, 65(5): 1436-1441.
|
[21] |
李广文, 张福平, 冯起, 等. 西咸地区土壤重金属特征及土壤性质关系分析. 土壤通报, 2015, 46(5):1259-1263.
|
[21] |
Li G W, Zhang F P, Feng Q, et al. Soil heavy metal characteristics and relationship analysis of soil properties on the Xi’an and Xianyang region[J]. Chinese Journal of Soil Science, 2015, 46(5): 1259-1263.
|
[22] |
刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5):1157-1163.
|
[22] |
Liu D R, Jiao S. Assessment of genetic classification and development suitability of natural selenium-rich soil[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1157-1163.
|
[23] |
赵翠翠, 南忠仁, 刘晓文, 等. 绿洲农田土壤主要微量元素的影响因素及分布特征研究——以张掖甘州区和临泽县为例[J]. 干旱区资源与环境, 2010, 24(10):127-132.
|
[23] |
Zhao C C, Nan Z R, Liu X W, et al. Spatial distribution and affecting factors of main trace elements in oasis cropland:A case of Ganzhou District and Linze of Zhangye[J]. Journal of Arid Land Resources and Environment, 2010, 24(10): 127-132.
|
[24] |
王雪梅, 柴仲平, 杨雪峰. 荒漠绿洲区不同土地利用方式下土壤养分差异分析[J]. 干旱地区农业研究. 2017, 35(1):91-96.
|
[24] |
Wang X M, Chai Z P, Yang X F. Analysis on soil nutrients difference under different land use patterns in desert oasis region[J]. Agricultural Research in the Arid Areas. 2017, 35(1): 91-96.
|
[1] |
FAN Hai-Yin, SONG Rui-Rui, YU Lin-Song, TENG Yong-Bo, WAN Fang, ZHANG Xiu-Wen, LI Sheng-Yu, ZHAO Chuang. Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1326-1335. |
[2] |
ZHANG Zhe-Huan, DAI Hui-Min, SONG Yun-Hong, YANG Jia-Jia. Geochemical characteristics of some soil trace elements in the Wuyuer River Basin, Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1097-1104. |
|
|
|
|