|
|
Geochemical characteristics of some soil trace elements in the Wuyuer River Basin, Heilongjiang Province |
ZHANG Zhe-Huan1,2,3( ), DAI Hui-Min1,2,3, SONG Yun-Hong1,2,3, YANG Jia-Jia1,2,3 |
1. Shenyang Center of China Geological Survey, Shenyang 110034, China 2. Key Laboratory for Evolution and Ecological Effect in Black Land, Ministry of Natural Resources, Shenyang 110034, China 3. Key Laboratory for Evolution and Ecological Effect in Black Land of Liaoning Province, Shenyang 110034, China |
|
|
Abstract The Wuyuer River basin in Heilongjiang Province is an endemic area with a high incidence of Keshan and Kashin-Beck diseases. This study investigated the distribution characteristics of the total content and available contents of the trace elements necessary for plants (i.e., B, Cu, Fe, Mn, Mo, and Zn) in the Wuyuer River basin using the 1:250 000 land quality geochemical survey data of the black land in northeast China. The results are as follows. ①The soil in the basin is highly rich in Mn, rich in Fe, moderately rich in Cu and Mo, and deficient in B and Zn. ②All the trace elements have natural contents and are not rich or deficient in the surface and deep soils of the basin, except for Mo, which is slightly depleted in the soils. ③The soil in the basin is highly rich in available Cu and Fe, rich in available Mn, moderately rich in available B and Zn, and deficient in available Mo. ④It is recommended that Mo fertilizer should be applied in blocks deficient in Mo to increase the content of available Mo in the soil and to improve the yield and quality of agricultural products.
|
Received: 25 January 2022
Published: 03 January 2023
|
|
|
|
|
|
Geological map of Wuyuer River Basin 1—upper Holocene;2—lower Holocene;3—upper Pleistocene;4—middle Pleistocene;5—Oligocene-Neogene;6—upper Cretaceous
|
元 素 | 分析方法 | 检出限/10-6 | 全量 | B | 重叠摄谱法(AES) | 1.00 | Cu | X射线荧光光谱法(XRF) | 0.90 | Fe | 等离子体发射光谱法(ICP-OES) | 0.01 | Mn | 等离子体发射光谱法(ICP-OES) | 0.30 | Mo | 等离子体质谱法(ICP-MS) | 0.10 | Zn | 等离子体发射光谱法(ICP-OES) | 0.30 | 有效态 | B | 等离子体发射光谱法(ICP-OES) | 0.0042 | Cu | 等离子体质谱法(ICP-MS) | 0.0180 | Fe | 等离子体发射光谱法(ICP-OES) | 0.0086 | Mn | 等离子体发射光谱法(ICP-OES) | 0.0086 | Mo | 等离子体质谱法(ICP-MS) | 0.0044 | Zn | 等离子体质谱法(ICP-MS) | 0.0120 |
|
Test and analysis methods and detection limits of total and effective states of trace elements
|
元素 | 样品数 | 最大值 | 最小值 | 平均值(X) | 中位数(M) | 标准差(S) | 离散系数(Cv) | 富集系数(q) | 表层 | B | 3045 | 51.80 | 10.80 | 31.02 | 30.80 | 6.96 | 0.22 | 0.88 | Cu | 2999 | 30.30 | 14.66 | 22.48 | 22.80 | 2.61 | 0.12 | 0.96 | Fe | 2993 | 6.57 | 3.17 | 4.87 | 4.90 | 0.57 | 0.12 | 0.94 | Mn | 3032 | 1341.00 | 172.00 | 758.38 | 744.00 | 195.65 | 0.26 | 0.93 | Mo | 2940 | 1.03 | 0.17 | 0.59 | 0.58 | 0.15 | 0.25 | 0.70 | Zn | 3040 | 90.60 | 31.55 | 60.98 | 61.70 | 9.94 | 0.16 | 0.93 | 深层 | B | 758 | 59.30 | 11.00 | 35.22 | 34.75 | 8.20 | 0.23 | | Cu | 761 | 31.50 | 14.48 | 23.54 | 24.20 | 3.02 | 0.13 | | Fe | 771 | 7.15 | 3.11 | 5.20 | 5.30 | 0.71 | 0.14 | | Mn | 760 | 1421.00 | 231.00 | 814.73 | 800.00 | 202.61 | 0.25 | | Mo | 761 | 1.52 | 0.25 | 0.85 | 0.84 | 0.23 | 0.27 | | Zn | 767 | 93.00 | 36.28 | 65.69 | 66.10 | 9.90 | 0.15 | |
|
Content of soil trace elements in Wuyuer River Basin
|
微量元素 | B | Cu | Fe | Mn | Mo | Zn | 乌裕尔河流域表层土壤 | 31.02 | 22.48 | 4.87 | 758.38 | 0.59 | 60.98 | 东北地区土壤[3] | 46.00 | 22.00 | | 840.00 | 2.20 | 85.00 | 比值 | 0.67 | 1.02 | | 0.90 | 0.27 | 0.72 | 东北黑土[4] | 36.30 | 20.10 | 3.44 | 656.10 | 0.81 | 74.00 | 比值 | 0.85 | 1.12 | 1.42 | 1.16 | 0.73 | 0.82 | 全国土壤(A层)[5] | 47.80 | 22.60 | 2.94 | 583.00 | 2.00 | 74.20 | 比值 | 0.65 | 0.99 | 1.66 | 1.30 | 0.30 | 0.82 | 世界土壤[6] | 20.00 | 30.00 | 4.00 | 1000 | 1.20 | 90.00 | 比值 | 1.55 | 0.75 | 1.22 | 0.76 | 0.49 | 0.68 |
|
Comparison of trace element content between topsoil in Wuyuer River Basin and other areas
|
地质单元 | B | Cu | Fe | Mn | Mo | Zn | 含量 | 等级 | 含量 | 等级 | 含量 | 等级 | 含量 | 等级 | 含量 | 等级 | 含量 | 等级 | 第四系全新统上部亚砂土、砂砾石 | 28.74 | 缺乏 | 21.67 | 中等 | 4.64 | 较丰富 | 590.83 | 中等 | 0.55 | 较缺乏 | 54.39 | 较缺乏 | 第四系全新统下部亚砂土、砂砾石 | 27.71 | 缺乏 | 21.61 | 中等 | 4.61 | 较丰富 | 599.78 | 中等 | 0.5 | 较缺乏 | 54.16 | 较缺乏 | 第四系上更新统黄土状亚黏土 | 28.89 | 缺乏 | 21.77 | 中等 | 4.6 | 中等 | 745.95 | 丰富 | 0.5 | 较缺乏 | 58.95 | 较缺乏 | 第四系中更新统亚黏土、亚砂土 | 32.07 | 较缺乏 | 22.76 | 中等 | 5.07 | 较丰富 | 760.19 | 丰富 | 0.61 | 中等 | 62.24 | 中等 | 古近系渐新统—新近系砂岩、泥岩 | 34.46 | 较缺乏 | 22.55 | 中等 | 4.48 | 中等 | 984.04 | 丰富 | 0.92 | 丰富 | 70.81 | 中等 | 白垩系上统泥岩、砂岩、页岩 | 34.12 | 较缺乏 | 23.22 | 中等 | 4.83 | 中等 | 886.06 | 丰富 | 0.8 | 较丰富 | 61.78 | 中等 |
|
Average content of trace elements in surface soil of different geological units
|
元素 | 暗棕壤 | 黑钙土 | 黑土 | 草甸土 | 沼泽土 | 湖泊水库土 | B | 平均含量/10-6 | 32.78 | 29.15 | 32.26 | 30.43 | 32.09 | 28.13 | 等级 | 较缺乏 | 缺乏 | 较缺乏 | 较缺乏 | 较缺乏 | 缺乏 | Cu | 平均含量/10-6 | 21.53 | 22.62 | 22.40 | 22.29 | 23.56 | 20.73 | 等级 | 中等 | 中等 | 中等 | 中等 | 中等 | 较缺乏 | Fe | 平均含量/10-6 | 4.41 | 4.84 | 4.99 | 4.87 | 4.60 | 4.21 | 等级 | 中等 | 较丰富 | 较丰富 | 较丰富 | 中等 | 中等 | Mn | 平均含量/10-6 | 953.75 | 797.18 | 746.29 | 665.33 | 827.14 | 590.35 | 等级 | 丰富 | 丰富 | 丰富 | 较丰富 | 丰富 | 中等 | Mo | 平均含量/10-6 | 0.88 | 0.50 | 0.63 | 0.56 | 0.73 | 0.55 | 等级 | 丰富 | 较缺乏 | 中等 | 中等 | 较丰富 | 较缺乏 | Zn | 平均含量/10-6 | 67.38 | 62.42 | 61.06 | 57.68 | 64.39 | 53.66 | 等级 | 中等 | 中等 | 较缺乏 | 较缺乏 | 中等 | 较缺乏 |
|
Average content of trace elements in surface layer of different types of soil
|
元素 | 耕地 | 林地 | 草地 | 未利用土地 | 建设用地 | 水域用地 | B | 平均含量/10-6 | 31.06 | 32.76 | 30.80 | 29.69 | 31.76 | 30.31 | 等级 | 较缺乏 | 较缺乏 | 较缺乏 | 缺乏 | 较缺乏 | 较缺乏 | 富集系数 | 1.00 | 1.06 | 0.99 | 0.96 | 1.02 | 0.98 | Cu | 平均含量/10-6 | 22.60 | 20.98 | 22.87 | 22.14 | 23.18 | 22.41 | 等级 | 中等 | 较缺乏 | 中等 | 中等 | 中等 | 中等 | 富集系数 | 1.01 | 0.93 | 1.02 | 0.98 | 1.03 | 1.00 | Fe | 平均含量/10-6 | 4.97 | 4.38 | 4.83 | 4.68 | 4.99 | 4.59 | 等级 | 较丰富 | 中等 | 较丰富 | 较丰富 | 较丰富 | 较丰富 | 富集系数 | 1.02 | 0.90 | 0.99 | 0.96 | 1.02 | 0.94 | Mn | 平均含量/10-6 | 750.17 | 924.95 | 782.87 | 669.31 | 777.81 | 769.88 | 等级 | 丰富 | 丰富 | 丰富 | 较丰富 | 丰富 | 丰富 | 富集系数 | 0.99 | 1.22 | 1.03 | 0.88 | 1.03 | 1.02 | Mo | 平均含量/10-6 | 0.58 | 0.89 | 0.62 | 0.61 | 0.59 | 0.64 | 等级 | 中等 | 丰富 | 中等 | 中等 | 中等 | 中等 | 富集系数 | 0.98 | 1.51 | 1.05 | 1.03 | 1.00 | 1.08 | Zn | 平均含量/10-6 | 61.11 | 66.38 | 61.10 | 58.11 | 61.88 | 57.29 | 等级 | 较缺乏 | 中等 | 较缺乏 | 较缺乏 | 较缺乏 | 较缺乏 | 富集系数 | 1.00 | 1.09 | 1.00 | 0.95 | 1.01 | 0.94 |
|
Average content of surface trace elements in different land use types
|
等级 | 含义 | B | Cu | Fe | Mn | Mo | Zn | 全量 | 一等 | 丰富 | >65 | >29 | >5.3 | >700 | >0.85 | >84 | 二等 | 较丰富 | >55~65 | >24~29 | >4.60~5.30 | >600~700 | >0.65~0.85 | >71~84 | 三等 | 中等 | >45~55 | >21~24 | >4.15~4.60 | >500~600 | >0.55~0.65 | >62~71 | 四等 | 较缺乏 | >30~45 | >16~21 | >3.40~4.15 | >375~500 | >0.45~0.55 | >50~62 | 五等 | 缺乏 | ≤30 | ≤16 | ≤3.40 | ≤375 | ≤0.45 | ≤50 | 上限值 | | ≥3000 | ≥50 | | ≥1500 | ≥4 | ≥200 | 有效态 | 一等 | 丰富 | >2 | >1.8 | >20 | >30 | >0.3 | >3 | 二等 | 较丰富 | >1~2 | >1.0~1.8 | >10~20 | >15~30 | >0.2~0.3 | >1~3 | 三等 | 中等 | >0.5~1.0 | >0.2~1.0 | >4.5~10 | >5~15 | >0.15~0.2 | >0.5~1.0 | 四等 | 较缺乏 | >0.2~0.5 | >0.1~0.2 | >2.5~4.5 | >1~5 | >0.1~0.15 | >0.3~0.5 | 五等 | 缺乏 | ≤0.2 | ≤0.1 | ≤2.5 | ≤1 | ≤0.1 | ≤0.3 |
|
classification criteria for total and effective levels of trace elements
|
元素 | 一等(丰富) | 二等(较丰富) | 三等(中等) | 四等(较缺乏) | 五等(缺乏) | 超上限 | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | B | 4.01 | 0.03 | 58.25 | 0.48 | 420.18 | 3.45 | 6107.91 | 50.19 | 5579.84 | 45.85 | | | Cu | 64.02 | 0.53 | 3512.63 | 28.86 | 5185.29 | 42.61 | 2922.96 | 24.02 | 485.3 | 3.98 | | | Fe | 2547.17 | 20.93 | 5939.63 | 48.80 | 2228.54 | 18.31 | 979.09 | 8.04 | 475.76 | 3.92 | | | Mn | 7400.69 | 60.81 | 2329.67 | 19.14 | 1367.97 | 11.24 | 732.46 | 6.02 | 286.85 | 2.36 | 52.55 | 0.43 | Mo | 1216.77 | 10.00 | 2829.33 | 23.25 | 3142.06 | 25.82 | 2883.73 | 23.69 | 2098.31 | 17.24 | | | Zn | 183.04 | 1.50 | 1582.76 | 13.01 | 4205.82 | 34.56 | 4610.53 | 37.88 | 1588.06 | 13.05 | | |
|
Content grade of trace elements in topsoil
|
|
Grade map of topsoil trace elements Content 1—first-class(rich);2—second(relatively rich);3—third class (secondary);4—fourth class (relatively lack);5—five class (lack)
|
元素 | B | Cu | Fe | Mn | Mo | Zn | 范围值 | 平均值 | 范围值 | 平均值 | 范围值 | 平均值 | 范围值 | 平均值 | 范围值 | 平均值 | 范围值 | 平均值 | 有效态含量 | 0.19~2.32 | 0.96 | 0.59~5.68 | 2.33 | 16.45~553.28 | 159.72 | 2.72~62.45 | 16.25 | 0.026~0.157 | 0.08 | 0.37~1.98 | 0.93 | 等级 | | 中等 | | 丰富 | | 丰富 | | 较丰富 | | 缺乏 | | 中等 | 缺乏临界值 | | 0.50 | | 0.22 | | 4.50 | | 5.00 | | 0.15 | | 0.50 | 活化率/% | | 3.09 | | 10.36 | | 0.33 | | 2.14 | | 13.56 | | 1.53 |
|
Available content of trace elements in topsoil of Wuyuer River Basin10-6
|
[1] |
浙江农业大学. 植物营养与肥料[M]. 北京: 中国农业出版社, 1991:142-156.
|
[1] |
Zhejiang Agriculture University. Plants nutrition and fertilizer[M]. Beijing: China Agricultural Press, 1991:142-156.
|
[2] |
张春善. 动物必需微量元素营养学[M]. 北京: 高等教育出版社, 2007:2-3.
|
[2] |
Zhang C H. Essential trance element nutrition of animals[M]. Beijing: Higher Education Press, 2007:2-3.
|
[3] |
中国科学院林业土壤研究所. 中国东北土壤[M]. 北京: 科学出版社, 1980:392-393.
|
[3] |
Institute of Forestry and Soil,Chinese Academy of Sciences. Soil in Northeast China[M]. Beijing: Science Press, 1980:392-393.
|
[4] |
魏丹, 孟凯. 中国东北黑土[M]. 北京: 中国农业出版社, 2017:74-77.
|
[4] |
Wei D, Meng K. Black soil in Northeast China[M]. Beijing: China Agricultural Press, 2017:74-77.
|
[5] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:87-90.
|
[5] |
China Environmental Monitoring Center. Background values of soil elememets in China[M]. Beijing: China Environmental Science Press, 1990:87-90.
|
[6] |
Bowen H J M. 元素的环境化学[M].崔仙舟,译. 北京: 科学出版社, 1986:45-46.
|
[6] |
Bowen H J M. Environmental chemistry of element[M].Cui X Z,translated. Beijing: Science Press, 1986:45-46.
|
[7] |
张哲寰, 宋运红, 赵君. 黑龙江讷河市土壤某些微量元素地球化学特征[J]. 地质与资源, 2019, 28(4):378-382.
|
[7] |
Zhang Z H, Song Y H, Zhao J. Trace element geochemistry of the soil in Nehe City,Heilingjiang Province[J]. Geology and Resources, 2019, 28(4):378-382.
|
[8] |
陆景冈. 土壤地质学[M]. 北京: 地质出版社, 1997:242.
|
[8] |
Lu J G. Soil geology[M]. Beijing: Geology Press, 1997:242.
|
[9] |
廖启林, 华明, 张为, 等. 人为活动对江苏土壤元素含量分布的影响[J]. 地质学刊, 2012, 36(2):147-156.
|
[9] |
Liao Q L, Hua M, Zhang W, et al. Influence of human activities on soil element distributions in Jiangsu[J]. Journal of Geology, 2012, 36(2):147-156.
|
[10] |
廖启林, 金洋, 吴新民, 等. 南京地区土壤元素的人为活动环境富集系数研究[J]. 中国地质, 2005, 32(1):141-147.
|
[10] |
Liao Q L, Jin Y, Wu X N, et al. Artificial environmental concentration coefficients of elements in soils in the Nanjing area[J]. Geology in China, 2005, 32(1):141-147.
|
[11] |
王祖伟, 徐利淼, 张文具. 土壤微量元素与人类活动强度的对应关系[J]. 土壤通报, 2002, 33(4):303-305.
|
[11] |
Wang Z W, Xu L M, Zhang W J. Corresponding relationship between trace elements in soil and human activity intensity[J]. Chinese Journal of Soil Science, 2002, 33(4):303-305.
|
[12] |
张哲寰, 赵君, 戴慧敏, 等. 黑龙江省讷河市土壤—作物系统Se元素地球化学特征[J]. 地质与资源, 2020, 29(1):38-43.
|
[12] |
Zhang Z H, Zhao J, Dai H M, et al. Geochemistry of selenium in soil system of nehe citi, Heilongjiang Province[J]. Geology and Resources, 2020, 9(1):38-43.
|
[13] |
于君宝, 王金达, 刘景双, 等. 典型黑土pH值变化对微量元素有效态含量的影响研究[J]. 水土保持学报, 2002, 16(2):93-95
|
[13] |
Yu J B, Wang J D, Liu J S, et al. Effect of soil pH value variation on effective content of trace elements in typical black soil[J]. Journal of Soil and Water Conservation, 2002, 16(2):93-95.
|
[14] |
王雪梅, 柴仲平, 毛东雷. 不同耕质层土壤有效态微量元素含量特征[J]. 水土保持通报, 2015, 35(2):189-192.
|
[14] |
Wang X M, Chai Z P, Mao D L. Characteristics of topsoil available trace elements with different textures[J]. Bulletin of Soil and Water Conservation, 2015, 35(2):189-192.
|
[15] |
陆继龙, 周永昶, 周云轩. 吉林省黑土某些微量元素环境地球化学特征[J]. 土壤通报, 2002, 33(5):465-368.
|
[15] |
Lu J L, Zhou Y C, Zhun Y X. Environmental geochemical characteristics of some microelements in the black soil of Jilin province[J]. Chinese Journal of Soil Science, 2002, 33(5):465-368.
|
[16] |
王敬国. 生物地球化学—物质循环与土壤过程[M]. 北京: 中国农业大学出版社, 2017:372-378.
|
[16] |
Wang J G. Biological Geochemistry-material cycle and soil processes[M]. Beijing: China Agriculture University Press, 2017:372-378.
|
[17] |
黄增奎, 徐素君, 方桂鑫, 等. 浙江省土壤有效态微量元素含量和微肥应用[J]. 中国土壤与肥料, 1995(3):28-32.
|
[17] |
Huang Z K, Xu S J, Fang G X, et al. Content of available trace elements in soil and application of trace element fertilizer in Zhejiang Province[J]. Soil and Fertilizer Sciences in China, 1995(3):28-32.
|
[18] |
王德宜, 富德义. 吉林省西部地区土壤微量元素有效性评价[J]. 土壤, 2002, 34(2):86-89.
|
[18] |
Wang D Y, Fu D Y. Evaluation on availability of soil trace elements in Western Jilin Province[J]. Soils, 2002, 34(2):86-89.
|
[19] |
刘铮, 朱其清, 唐丽华, 等. 我国缺乏微量元素的土壤及其区域分布[J]. 土壤学报, 1982, 19(3):209-223.
|
[19] |
Liu Z, Zhu Q Q, Tang L H, et al. Geographical distribution of fertilizer trace elements-deficient in soils china[J]. Acta Pedologica Sinica, 1982, 19(3):209-223.
|
[20] |
张俊伶, 张福锁, 廖红, 等. 植物营养学[M]. 北京: 中国农业大学出版社, 2021,150-151,316-317.
|
[20] |
Zhang J L, Zhang F S, Liao H, et al. Plants nutrition[M]. Beijing: China Agriculture University Press, 2021, 150-151, 316-317.
|
[21] |
林年丰, 医学环境地球化学[M]. 长春: 吉林科学技术出版社, 1991:148.
|
[21] |
Lin N F. Medical Environmental Geochemistry[M]. Changchun: Jilin Science and Technology Press, 1991:148.
|
[22] |
黄云. 植物营养学[M]. 北京: 中国农业出版社, 2014:163-166.
|
[22] |
Huang Y. Plants nutrition[M]. Beijing: China Agricultural Press, 2014:163-166.
|
[23] |
贺家媛, 郑文麒, 邓留珍. 河南省土壤微量元素含量分布及在农业上的应用[J]. 土壤学报, 1986, 32(2):132-141.
|
[23] |
He J Y, Zheng W L, Deng L Z. Destribution and fertilixer efficiency of the trace elements in soils of Henan province[J]. Acta Pedologica Sinica, 1986, 32(2):132-141.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing. GIS-based assessment of the radioactivity levels and risks of soil environment[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1336-1347. |
|
|
|
|