Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1271-1280    DOI: 10.11720/wtyht.2025.0051
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地震属性与地质力学联合的裂缝建模技术及裂缝有效性分析——以四川盆地涪陵地区侏罗系页岩为例
周江辉1(), 刘晓晶1, 熊晨皓1, 胡鑫1, 吴益名2
1.中国石油化工股份有限公司 勘探分公司, 四川 成都 610041
2.中国石化西南石油局 采气二厂, 四川 阆中 637400
Seismic attribute-geomechanics integrated fracture modeling technology and fracture effectiveness analysis: A case study of the Jurassic shales in the Fuling area, Sichuan Basin
ZHOU Jiang-Hui1(), LIU Xiao-Jing1, XIONG Chen-Hao1, HU Xin1, WU Yi-Ming2
1. Exploration Company, SINOPEC, Chengdu 610041, China
2. No. 2 Gas Production Plant, Southwest Petroleum Bureau, SINOPEC, Langzhong 637400, China
全文: PDF(9288 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

断裂分布影响页岩气水平井的轨迹设计和压裂人工裂缝的改造效果。断层和节理是断裂的两种类型,通过地震属性实现断层建模,利用地质力学构造恢复和摩尔库伦理论实现节理缝预测;离散网格裂缝(DFN)在建模时融合断层建模和节理缝建模结果,实现天然构造裂缝的空间刻画。将该方法应用到四川盆地涪陵地区侏罗系陆相页岩勘探中,裂缝模型与成像测井解释结果一致,明确了裂缝发育区和裂缝空间的展布规律;通过典型井裂缝建模与压裂效果对比进行压裂改造有效性评价,提出拉张性质的垂直或斜交井轨迹方向的裂缝更有易于压裂改造。此项成果对勘探阶段预测裂缝发育区和指导水平井轨迹设计有积极意义,能为下一步勘探部署提供指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周江辉
刘晓晶
熊晨皓
胡鑫
吴益名
关键词 断裂建模地震属性页岩储层DFN裂缝建模    
Abstract

The distribution of fractures influences the trajectory design of shale gas horizontal wells and the stimulation effectiveness of hydraulic fractures. Faults and joints serve as two types of fractures. Accordingly, this study proposed the seismic attribute-geomechanics integrated fracture modeling technology. Specifically, fault modeling is conducted using seismic attributes, and joint prediction is performed using geomechanical structural restoration and Mohr-Coulomb theory. The obtained results of faults and joints are then integrated into the discrete fracture network (DFN) modeling for spatial characterization of natural tectonic fractures. The proposed technology was applied to the exploration of Jurassic lacustrine shales in the Fuling area within the Sichuan Basin. Its fracture modeling results were consistent with the imaging log interpretation results, confirming the development zones and spatial distribution patterns of fractures. Moreover, the stimulation effectiveness of fracturing was evaluated by comparing the fracture modeling results of typical wells with the actual fracturing performance. The evaluation results indicate that tensile fractures that are vertical or oblique to well trajectories are favorable for fracturing. Overall, the results of this study hold positive implications for predicting fracture development zones and guiding horizontal well trajectory design in the exploration stage, serving as a reference for subsequent exploration deployment.

Key wordsfracture modeling    seismic attribute    Mohr-Coulomb failure criterion    discrete fracture network (DFN) modeling
收稿日期: 2025-03-06      修回日期: 2025-07-30      出版日期: 2025-12-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项“侏罗系致密油-页岩油富集规律及增储区带评选”(2025ZD1400405);中国石化股份公司“四川盆地及周缘资源评价”(P23221)
引用本文:   
周江辉, 刘晓晶, 熊晨皓, 胡鑫, 吴益名. 地震属性与地质力学联合的裂缝建模技术及裂缝有效性分析——以四川盆地涪陵地区侏罗系页岩为例[J]. 物探与化探, 2025, 49(6): 1271-1280.
ZHOU Jiang-Hui, LIU Xiao-Jing, XIONG Chen-Hao, HU Xin, WU Yi-Ming. Seismic attribute-geomechanics integrated fracture modeling technology and fracture effectiveness analysis: A case study of the Jurassic shales in the Fuling area, Sichuan Basin. Geophysical and Geochemical Exploration, 2025, 49(6): 1271-1280.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0051      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1271
Fig.1  不同断距不同褶皱程度的模型及正演结果属性分析
Fig.2  岩石破裂可能性预测原理
Fig.3  UVT坐标转换原理示意(根据文献[8]修改)
Fig.4  不同褶皱程度的模型地质力学建模正演结果
Fig.5  理论模型的裂缝建模结果
Fig.6  联合裂缝建模与分析思路
Fig.7  凉高山组与东岳庙段地震属性与成像测井图像
Fig.8  凉高山组与东岳庙段地质力学裂缝预测
Fig.9  涪陵地区凉高山组裂缝建模结果与部分井FMI成像测井对比
Fig.10  典型井裂缝建模与微地震对比
Fig.11  压裂段与微地震事件数量柱状图
Fig.12  压裂沟通断层型典型页岩气水平井裂缝建模与微地震叠合图
Fig.13  井周无断层典型井裂缝建模与微地震叠合结果
[1] 关宝文, 郭建明, 杨燕, 等. 油气储层裂缝预测方法及发展趋势[J]. 特种油气藏, 2014, 21(1):12-17,151.
[1] Guan B W, Guo J M, Yang Y, et al. Methods of fracture prediction in oil & gas reservoirs and their development trend[J]. Special Oil & Gas Reservoirs, 2014, 21(1):12-17,151.
[2] 赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5):8-13.
[2] Zhao R, Zhao T, Li H L, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5):8-13.
[3] 刘军, 黄超, 杨林, 等. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3):747-756.
[3] Liu J, Huang C, Yang L, et al. Quantitative estimation technology for oil and gas productivity of fault-controlled fractured-vuggy bodies in Carbonate rocks in Shunbei area[J]. Geophysical and Geochemical Exploration, 2023, 47(3):747-756.
[4] 黄仁春, 刘若冰, 刘明, 等. 川东北通江—马路背地区须家河组断缝体储层特征及成因[J]. 石油与天然气地质, 2021, 42(4):873-883.
[4] Huang R C, Liu R B, Liu M, et al. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation,Tongjiang-Malubei area,northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4):873-883.
[5] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5):1189-1197.
[5] Huang Y Q. Characterization of multi-attitude fractures in tight sandstones in the Yuanba area,northeastern Sichuan Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1189-1197.
[6] 魏志红, 刘若冰, 魏祥峰, 等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探, 2022, 27(1):111-119.
[6] Wei Z H, Liu R B, Wei X F, et al. Evaluation and understanding of continental shale oil and gas exploration in Fuxing area,Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1):111-119.
[7] 葛勋, 郭彤楼, 黎茂稳, 等. 永川地区深层页岩气储层不同尺度裂缝精细建模[J]. 大庆石油地质与开发, 2023, 42(6):1-8.
[7] Ge X, Guo T L, Li M W, et al. Fine modeling of fractures with different scales in deep shale gas reservoirs in Yongchuan area[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6):1-8.
[8] 刘剑锋, 王鹏, 毛庆辉, 等. 基于不同尺度的储层裂缝建模方法对比[J]. 地球物理学进展, 2023, 38(5):2071-2079.
[8] Liu J F, Wang P, Mao Q H, et al. Comparison of reservoir fracture modeling methods based on different scales[J]. Progress in Geophysics, 2023, 38(5):2071-2079.
[9] 管树巍, Andreas Plesch, 李本亮, 等. 基于地层力学结构的三维构造恢复及其地质意义[J]. 地学前缘, 2010, 17(4):140-150.
[9] Guan S W, Plesch A, Li B L, et al. Volumetric structural restorations based on mechanical constraints and its geological significance[J]. Earth Science Frontiers, 2010, 17(4):140-150.
[10] 高晨阳, 赵福海, 高莲凤, 等. 基于构造应变分析的裂缝预测方法及其应用[J]. 地质力学学报, 2023, 29(1):21-33.
[10] Gao C Y, Zhao F H, Gao L F, et al. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics, 2023, 29(1):21-33.
[11] 梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2):443-450.
[11] Liang Z Q, Li H. Comparison and summary of different azimuthal anisotropic inversion techniques[J]. Geophysical and Geochemical Exploration, 2024, 48(2):443-450.
[12] 王洪求, 杨午阳, 谢春辉, 等. 不同地震属性的方位各向异性分析及裂缝预测[J]. 石油地球物理勘探, 2014, 49(5):925-931,820-821.
[12] Wang H Q, Yang W Y, Xie C H, et al. Azimuthal anisotropy analysis of different seismic attributes and fracture prediction[J]. Oil Geophysical Prospecting, 2014, 49(5):925-931,820-821.
[13] 陈杰, 李琼, 范欣然, 等. 利用分频相干技术检测页岩裂缝发育带[J]. 成都理工大学学报:自然科学版, 2017, 44(3):356-361.
[13] Chen J, Li Q, Fan X R, et al. Detection of fracture development zone in shale by using discrete frequency coherence cubes[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2017, 44(3):356-361.
[14] 李培培, 赵汝敏, 杨松岭, 等. 构造曲率与振幅曲率在地震资料解释中的应用[J]. 物探与化探, 2013, 37(5):916-920.
[14] Li P P, Zhao R M, Yang S L, et al. The application of structural curvature and amplitude curvature attribute to seismic interpretation[J]. Geophysical and Geochemical Exploration, 2013, 37(5):916-920.
[15] 谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
[15] Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
[16] 张珈畅, 李涛, 梁宏刚, 等. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6):1588-1598.
[16] Zhang J C, Li T, Liang H G, et al. Study on strike-slip fault system in Erbatai region,Tarim Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(6):1588-1598.
[17] 王永和. 压裂过程中能否形成剪切裂缝探讨[J]. 化学工程与装备, 2020(7):98-99.
[17] Wang Y H. Discussion on whether shear fractures can be formed during fracturing[J]. Chemical Engineering & Equipment, 2020(7):98-99.
[18] 李菊红. 矿产勘查中高精度构造和地层建模新技术[C]// 合肥: 首届全国矿产勘查大会, 2021.
[18] Li J H. New high-precision structural and stratigraphic modeling technologies in mineral exploration[C]// Hefei: The First National Mineral Exploration Conference Proceedings, 2021.
[19] 陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
[19] Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
[20] 孙炜, 李玉凤, 付建伟, 等. 测井及地震裂缝识别研究进展[J]. 地球物理学进展, 2014, 29(3):1231-1242.
[20] Sun W, Li Y F, Fu J W, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
[21] 李秋辰, 陈冬, 许文豪, 等. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4):1048-1055.
[21] Li Q C, Chen D, Xu W H, et al. Study on SRV based on microseismic continuous fracture network model[J]. Geophysical and Geochemical Exploration, 2023, 47(4):1048-1055.
[22] 任岚, 于志豪, 赵金洲, 等. 深层页岩气断层属性对压裂缝网的影响[J]. 特种油气藏, 2023, 30(2):95-100.
[22] Ren L, Yu Z H, Zhao J Z, et al. Influence of deep shale gas fault attributes on hydraulic fracture network[J]. Special Oil & Gas Reservoirs, 2023, 30(2):95-100.
[23] 王团, 赵海波, 杨志会, 等. 页岩储层天然裂缝对水力压裂改造效果的影响——以松辽盆地古龙凹陷青山口组页岩为例[J]. 石油地球物理勘探, 2025, 60(1):213-224.
[23] Wang T, Zhao H B, Yang Z H, et al. Influence of natural fractures on hydraulic fracturing effect of shale reservoir:A case study of Qingshankou Formation shale in Gulong Sag of Songliao Basin[J]. Oil Geophysical Prospecting, 2025, 60(1):213-224.
[1] 杨晓东, 张建强, 耿利强, 张学启, 程慧慧, 康苒. 煤矿井下巷道的地震识别效果及分析[J]. 物探与化探, 2025, 49(5): 1133-1140.
[2] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[3] 王维强. 基于KICA属性优化的支持向量机储层参数预测[J]. 物探与化探, 2021, 45(4): 990-997.
[4] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[5] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
[6] 刁新东, 李映涛, 顾伟欣, 邓锋, 唐馨. 三角洲水下分流河道砂体地震预测方法研究——以塔河油田三叠系河道砂岩为例[J]. 物探与化探, 2018, 42(3): 569-575.
[7] 姜春香, 李培, 王小江, 荣立新, 陈德元. 木里地区天然气水合物地震属性分析[J]. 物探与化探, 2017, 41(6): 1019-1026.
[8] 贾跃玮, 魏水建, 游瑜春, 王丹. 兴隆气田长兴组生物礁储层预测研究[J]. 物探与化探, 2017, 41(4): 605-610.
[9] 刘爱群, 范彩伟, 蔡军, 方小宇, 李文拓, 严恒. 高温高压盆地东方区黄流组三维压力建模技术[J]. 物探与化探, 2016, 40(2): 423-428.
[10] 洪忠, 张猛刚, 苏明军. 应用地震波形分类技术识别岩相的适用性和局限性[J]. 物探与化探, 2013, 37(5): 904-910.
[11] 申有义, 刘海平. 地震属性方法在煤矿采空区解释上的应用[J]. 物探与化探, 2012, 36(S1): 65-69.
[12] 曾维望, 许玉莹, 成跃. 基于地震属性分析的采空区探测技术与应用[J]. 物探与化探, 2012, 36(S1): 78-82.
[13] 汪勇, 阳和华, 桂志先. 流体替代的地震反射振幅特征分析[J]. 物探与化探, 2012, 36(6): 991-995.
[14] 王学习, 毕建军, 王利功, 王振辉. 地层切片穿时现象对地震属性的影响[J]. 物探与化探, 2012, 36(1): 94-98.
[15] 崔伟雄, 李德春, 徐荣华. 煤田岩溶塌陷正演模拟及属性应用[J]. 物探与化探, 2011, 35(5): 648-651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com