Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1039-1052    DOI: 10.11720/wtyht.2025.0054
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
河南省桐柏县老湾金矿地球化学特征及深部成矿预测
张宏燕1(), 赵焕2, 郭鹏1
1.河南省第一地质勘查院有限公司,河南 郑州 450001
2.河南省地质研究院,河南 郑州 450000
Geochemical characteristics and deep metallogenic prediction of the Laowan gold belt in Tongbai County, Henan Province
ZHANG Hong-Yan1(), ZHAO Huan2, GUO Peng1
1. Henan First Geological Exploration Institute Co., Ltd., Zhengzhou 450001, China
2. Henan Institute of Geology, Zhengzhou 450000, China
全文: PDF(7371 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

老湾金矿带地处秦岭造山带东段,南阳盆地与吴城盆地之间,金资源量达超大型规模,属形成于燕山晚期的中低温岩浆热液型金矿床。为了推动第二找矿空间的开辟,实现新的找矿突破,对老湾金矿59号矿体原生晕进行研究,采用多种统计方法探讨成矿元素之间的相关关系,寻找可靠的地球化学预测标志,进而预测深部找矿方向。研究表明:矿体原生晕轴向分带序列为Sn-Ba-As-Au-Pb-Cu-Sb-Ag-Mo-Bi-W-Hg-Zn,前缘元素Hg排序靠后,在成矿元素Au、Ag、Pb、Cu的后面,指示矿体向深部还有盲矿体,或原有矿体向-650 m以深还有较大的延伸;尾晕元素Sn在分带序列前排,指示矿体遭受了一定程度的剥蚀。采用相关分析、聚类分析和因子分析的方法研究了成矿元素与其他金属元素之间的亲缘性,其中Cu、Ag与Au具较强相关性,可作为矿区内找矿标志。前缘晕与尾晕的累加指数比值在深部-650 m处有升高趋势,且F2因子得分等值线在深部-650 m处异常较为发育且尚未闭合,说明-650 m标高以深仍有较好的找矿远景。综上分析后提出,研究区304勘探线ZK3041标高-650 m以深为找矿目标区域。在304勘探线ZK3041北部指导施工了预测钻孔,在-720 m左右成功见到59号矿体的延伸,根据各评价指标,认为矿体向下仍有很好的找矿潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宏燕
赵焕
郭鹏
关键词 老湾金矿带地球化学特征原生晕成矿预测    
Abstract

The Laowan gold belt is located in the eastern part of the Qinling orogenic belt, between the Nanyang and Wucheng basins. It boasts super-large gold resources hosted by moderate- to low-temperature magmatic-hydrothermal gold deposits formed during the Late Yanshanian. To explore the second exploration space and achieve new prospecting breakthroughs, this study investigated the primary halo of the No.59 ore body in the Laowan gold belt. Multiple statistical methods were employed to analyze the correlations among ore-forming elements. Accordingly, reliable geochemical indicators were identified to predict deep prospecting orientations. The results show that the primary halo of the No. 59 ore body exhibits an axial zoning sequence of Sn, Ba, As, Au, Pb, Cu, Sb, Ag, Mo, Bi, W, Hg, and Zn. The front-halo element Hg appears late in sequence, positioned after ore-forming elements Au, Ag, Pb, and Cu, suggesting the presence of blind ore bodies at depth or significant extension of the known ones to a burial depth of 650 m and above. In contrast, the rear-halo element Sn appears early in the sequence, indicating that the ore body was somewhat denuded. Correlation, cluster, and factor analyses were used to investigate the affinities between ore-forming elements and other metallic elements. Strong correlations were observed among Cu, Ag, and Au, establishing them as effective prospecting indicators within the deposit area. The cumulative index ratio of front- to rear-halo elements showed an increasing trend at a burial depth of 650 m, where a well-developed and non-closed anomaly was revealed by the F2 factor score contour. This suggests promising prospecting potential at this depth and deeper parts. Based on the comprehensive analysis, this study posits that the area at and below the burial depth of 650 m in borehole ZK3041 along the exploration line 304 is an exploration target. A prediction borehole drilled north of borehole ZK3041 saw the extension of No.59 ore body at a burial depth of about 720 m. Moreover, the assessment indicators show that the ore body still holds significant prospecting potential in the deeper part.

Key wordsLaowan gold belt    geochemical characteristics    primary halo    metallogenic prediction
收稿日期: 2025-02-28      修回日期: 2025-06-03      出版日期: 2025-10-20
ZTFLH:  P632  
基金资助:2024年度河南省自然资源“揭榜挂帅”科研项目(豫自然资函[2024]620号-13);2023年度河南省自然资源科研项目(豫自然资函[2023]610号-13);河南省豫地科技集团2023年度重点科研类项目(JTZDKY202307)
作者简介: 张宏燕(1986-),女,2012年毕业于中国矿业大学(徐州),主要从事深部矿产资源勘查与研究工作。Email:522408856@qq.com
引用本文:   
张宏燕, 赵焕, 郭鹏. 河南省桐柏县老湾金矿地球化学特征及深部成矿预测[J]. 物探与化探, 2025, 49(5): 1039-1052.
ZHANG Hong-Yan, ZHAO Huan, GUO Peng. Geochemical characteristics and deep metallogenic prediction of the Laowan gold belt in Tongbai County, Henan Province. Geophysical and Geochemical Exploration, 2025, 49(5): 1039-1052.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0054      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1039
Fig.1  老湾金矿区地质图[1]
Fig.2  老湾金矿区矿石类型
a—发育多金属硫化物的烟灰色石英脉,切穿早期Ⅰ阶段乳白色石英脉; b—Ⅱ阶段中粗-细粒自行-它形黄铁矿Py2、黄铜矿与灰白色石英胶结,呈浸染构造;c—Ⅰ阶段灰白色石英中发育粗粒自形-半自形黄铁矿Py1,呈星点状分布;d—斜长角闪片岩型金矿石中细粒方铅矿呈团块状沿灰白色石英脉发育
Fig.3  老湾金矿区围岩蚀变
a—斜长角闪片岩中黄铁矿化呈细粒浸染状分布;b—主成矿期含黄铁矿等多金属硫化物的石英脉切穿二云石英片岩;c—成矿早期肉红色钾长石脉沿裂隙充填后被断裂错断;d—成矿晚期与石英胶结的碳酸盐脉沿斜长角闪岩裂隙发育
样品编号 样品岩性 取样位置
早3-3 黄铁矿化石英脉型
金矿石
坑道-150 m中段h59-5东沿
中1 石英脉型金矿石 坑道-100 m中段h60金矿脉
中4-2 蚀变岩型金矿石 坑道-100 m中段h5金矿脉
中6-2 石英脉型金矿石 坑道-100 m中段h59金矿脉
中9-1 石英脉型金矿石 坑道-150 m中段h57金矿脉
晚1-3 蚀变岩型金矿石 坑道-150 m中段h67金矿脉
晚3 石英脉型金矿石 坑道-150 m中段h67金矿脉
岩1 长英质岩脉 坑道-100 m中段h5金矿脉
岩2 长英质岩脉 坑道-100 m中段
岩3 斜长角闪岩 坑道-150 m中段
岩SZ1 二长花岗岩 钻孔ZKE1012孔深1721.47~
1724.35
围1 斜长角闪片岩 坑道-100 m中段
围3 斜长角闪片岩 坑道-150 m中段
围4 长英质岩脉 坑道-150 m中段
Table 1  全岩分析样品采样位置
序号 送样号 Al2O3 CaO TFe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI
1 早3-3 8.000 2.089 47.95 2.442 0.869 0.019 0.169 0.191 12.43 0.171 25.14
2 中1 3.563 1.939 25.51 1.081 1.273 0.141 0.077 0.02 49.65 0.119 16.48
3 中4-2 1.056 8.298 17.26 0.278 2.960 0.542 0.049 0.01 55.29 0.050 13.98
4 中6-2 1.033 3.756 46.98 0.344 0.671 0.065 0.342 0.326 12.51 0.062 20.98
5 中9-1 3.137 4.105 12.50 0.958 2.320 0.263 0.053 0.02 66.26 0.112 10.19
6 晚1-3 2.240 4.100 22.32 0.435 1.810 0.204 0.042 0.111 52.16 0.083 13.66
7 晚3 1.822 0.381 24.97 0.541 0.169 0.013 0.048 0.250 56.18 0.067 12.45
8 岩1 14.85 6.086 4.559 2.013 2.691 0.092 4.008 0.088 59.46 0.339 5.358
9 岩2 14.70 2.859 2.951 2.674 2.259 0.074 4.331 0.07 64.00 0.216 5.574
10 岩3 14.43 3.755 9.883 1.171 6.130 0.197 2.530 0.132 58.31 0.792 2.188
11 岩SZ1 12.58 0.705 1.064 3.857 0.029 0.052 4.849 0.01 75.54 0.037 1.086
12 围1 12.70 8.366 8.009 1.493 8.035 0.346 2.449 0.09 54.71 0.387 3.009
13 围3 17.62 1.089 7.196 4.158 2.647 0.096 1.208 0.123 60.66 0.776 3.886
14 围4 13.13 5.326 2.418 3.628 0.300 0.093 4.143 0.02 68.01 0.038 2.280
Table 2  老湾金矿区岩矿石岩石化学成分及特征参数
Fig.4  稀土元素球粒陨石标准化曲线
Fig.5  微量元素原始地幔标准化蛛网
Fig.6  老湾金矿区59号矿体304勘探线剖面[1]
元素 Au Ag Sn As Sb Hg Bi Cu Pb Zn W Mo Ba
外带 60 0.5 2.5 6 0.5 15 1.5 100 25 70 12 1 250
中带 120 1 5 12 1 30 3 200 50 140 24 2 500
内带 480 2 10 24 2 60 6 400 100 280 48 4 1000
Table 3  老湾金矿区岩石样品中元素分带参数
Fig.7  老湾金矿区59号矿体304勘探线元素异常剖析
标高 Au Ag Sn As Sb Hg Bi Cu Pb Zn W Mo Ba
0 0.010 0.008 0.108 0.014 0.174 0.052 0.004 0.002 0.089 0.326 0.001 0.019 0.202
-100 0.017 0.118 0.052 0.091 0.143 0.053 0.001 0.003 0.075 0.122 0.002 0.040 0.301
-200 0.076 0.083 0.090 0.032 0.180 0.065 0.004 0.003 0.074 0.309 0.003 0.025 0.135
-250 0.046 0.060 0.069 0.091 0.247 0.054 0.003 0.003 0.083 0.255 0.002 0.018 0.067
-350 0.053 0.062 0.046 0.028 0.306 0.049 0.002 0.041 0.095 0.199 0.001 0.015 0.104
-450 0.012 0.029 0.072 0.044 0.409 0.060 0.003 0.032 0.047 0.246 0.001 0.022 0.022
-550 0.057 0.164 0.053 0.013 0.137 0.062 0.039 0.025 0.090 0.182 0.044 0.116 0.018
-650 0.002 0.010 0.058 0.021 0.248 0.085 0.003 0.005 0.053 0.369 0.002 0.039 0.105
Table 4  老湾金矿区59号矿体304勘探线不同中段指示元素的分带指数
元素 Au Ag Sn As Sb Hg Bi Cu Pb Zn W Mo Ba
Au 1
Ag 0.582 1
Sn -0.058 -0.022 1
As 0.32 0.403 0.058 1
Sb 0.149 0.353 -0.043 0.26 1
Hg 0.265 0.205 -0.01 0.017 -0.028 1
Bi 0.258 0.376 0.031 -0.048 -0.005 0.285 1
Cu 0.66 0.435 0.004 0.178 0.029 0.075 0.194 1
Pb 0.295 0.33 0.023 0.059 0.032 0.043 0.252 0.269 1
Zn -0.055 -0.101 0.017 -0.226 0.052 0.087 0.16 -0.086 0.227 1
W 0.261 0.369 0.031 -0.03 -0.004 0.406 0.745 0.189 0.178 0.112 1
Mo 0.082 0.222 0.035 -0.075 -0.009 0.126 0.632 0.088 0.236 0.2 0.616 1
Ba -0.078 -0.079 0.054 -0.032 -0.016 -0.081 -0.048 -0.073 0.09 -0.029 -0.052 -0.015 1
Table 5  老湾金矿原生晕元素相关系数矩阵
Fig.8  老湾金矿原生晕元素R型聚类分析
元素 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
Au 0.6537 -0.5102 -0.1193 0.3056 -0.1009 -0.0322 -0.0075 -0.1797 -0.1028 -0.0002 -0.2744 0.1996 -0.1882
Ag 0.7803 -0.3741 0.1133 -0.165 0.0023 0.0408 -0.0086 -0.0109 0.0927 -0.1557 -0.2885 -0.2636 0.1542
Sn 0.007 0.0482 0.2407 0.1958 0.6634 -0.6233 -0.2122 -0.1194 0.1139 0.0035 -0.0163 -0.0118 -0.0084
As 0.2662 -0.6014 0.1152 -0.3151 0.2751 -0.0556 -0.0119 0.4489 -0.3957 0.0179 0.1253 0.0427 -0.0118
Sb 0.1728 -0.308 0.4332 -0.6867 -0.0763 0.0454 -0.0817 -0.3496 0.2029 0.1078 0.1225 0.0921 -0.0549
Hg 0.3923 0.1263 -0.527 -0.1104 0.0235 0.1353 -0.7007 0.0082 0.0123 0.1178 0.0752 -0.0888 -0.0527
Bi 0.7044 0.4641 -0.0472 -0.122 0.1198 0.0163 0.224 0.0474 0.0683 -0.3456 0.1731 -0.0905 -0.205
Cu 0.5789 -0.4101 -0.0065 0.4511 -0.1663 -0.0848 0.1184 -0.2552 -0.0838 0.1085 0.3777 -0.111 0.0734
Pb 0.4643 0.0519 0.515 0.3382 -0.1841 0.1283 -0.203 0.4263 0.3375 0.0486 0.0518 0.0995 0.0032
Zn 0.0341 0.4838 0.5176 0.0166 -0.4151 -0.2043 -0.2973 -0.1126 -0.4057 -0.1159 -0.0432 -0.0397 -0.0053
W 0.7525 0.4628 -0.1885 -0.1103 0.1397 0.0219 0.0271 -0.0879 -0.0658 -0.0858 0.029 0.2884 0.2187
Mo 0.5676 0.5575 0.0904 -0.0854 0.0944 -0.0072 0.2695 0.0498 -0.0887 0.4847 -0.1146 -0.0945 -0.051
Ba -0.1147 0.0517 0.3502 0.2427 0.4962 0.6975 -0.0878 -0.1976 -0.1471 -0.0301 -0.0054 -0.0226 -0.0082
累积因子方差贡献率/% 24.925 40.4867 50.2211 59.0933 67.2097 74.6508 80.9417 86.1843 90.446 93.8328 96.8047 98.7449 100
Table 6  老湾金矿原生晕初始因子载荷矩阵
元素 F1 F2 F3 F4 F5 F6 F7
Au 0.2629 1.0285 -0.2504 -0.3168 -0.007 -0.0797 -0.331
Ag 0.5292 0.8468 -0.1009 -0.7169 0.0066 -0.0159 -0.3369
Sn 0.0347 -0.0028 0.0368 0.0473 -0.9899 0.0546 0.0624
As -0.0593 0.4274 -0.4118 -0.713 -0.1947 0.0169 -0.0714
Sb 0.0152 0.0444 0.1121 -0.898 0.103 -0.0337 0.0576
Hg 0.3359 0.1942 -0.0708 -0.0217 0.053 -0.0801 -1.0787
Bi 1.0393 0.2991 0.1658 -0.1066 -0.0152 -0.0176 -0.2909
Cu 0.2534 0.9792 -0.1071 -0.1651 -0.0226 -0.0664 -0.1118
Pb 0.3696 0.5493 0.6012 -0.191 -0.0376 0.3176 -0.0478
Zn 0.2102 -0.2072 0.9589 0.0305 -0.0281 -0.0799 0.0963
W 1.0474 0.3375 0.1248 -0.0782 -0.0379 -0.0408 -0.5458
Mo 0.9661 0.1437 0.3095 -0.0225 -0.0378 0.0253 -0.1013
Ba -0.0595 -0.0837 0.0257 0.0544 -0.0503 0.9715 0.107
主因子方差贡献 2.3886 2.2404 1.2588 1.4884 1.0184 1.0401 1.0877
累积因子方差贡献率/% 24.925 40.4867 50.2211 59.0933 67.2097 74.6508 80.9417
Table 7  老湾金矿原生晕斜交因子模型矩阵
Fig.9  老湾金矿原生晕分带指数垂向变化
Fig.10  F2因子得分等值线分布
Fig.11  钻孔ZKE3042综合柱状图
注:Au、Hg含量单位为10-9,其余元素含量单位为10-6
[1] 陈建立, 陈金铎, 魏从玲, 等. 河南省桐柏县老湾金矿深部及外围普查报告[R]. 郑州: 河南省地质矿产勘查开发局第一地质勘查院, 2016.
[1] Chen J L, Chen J D, Wei C L, et al. Deep and external pre-inspection report on the Laowan gold deposit,the Tongbai County,Henan Province[R]. Zheng Zhou: The first geological exploration institute of Henan provincial bureau of geo-exploration and mineral development, 2016.
[2] 陈建立, 魏从玲, 陈英男, 等. 河南省桐柏县老湾金矿深部及外围普查取得重大突破[J]. 中国科技成果, 2022, 23(23):48-50.
[2] Chen J L, Wei C L, Chen Y N, et al. A major breakthrough has been made in the deep and peripheral prospecting of the Laowan Gold Deposit in Tongbo County,Henan Province[J]. China Science and Technology Achievements, 2022, 23(23):48-50.
[3] 陈建立. 老湾花岗岩体与金成矿关系新认识及其找矿意义[J]. 地质找矿论丛, 2018, 33(3):351-359.
[3] Chen J L. New understanding of the Laowan granite body-Au mineralization relation and the significance to ore-search breakthrough[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(3):351-359.
[4] 陈建立, 郭鹏, 陈英男, 等. 豫西南老湾金矿原生晕地球化学特征及深部成矿预测[J]. 金属矿山, 2019(7):124-134.
[4] Chen J L, Guo P, Chen Y N, et al. Geochemical characteristics of primary halo and deep metallogenic prediction of laowan gold deposit in southwestern Henan Province[J]. Metal Mine, 2019(7):124-134.
[5] 孙莉, 肖克炎, 高阳. 彩霞山铅锌矿原生晕地球化学特征及深部矿产评价[J]. 吉林大学学报:地球科学版, 2013, 43(4):1179-1189.
[5] Sun L, Xiao K Y, Gao Y. Primary halos characteristics of Caixiashan Pb-Zn deposit and prediction for deep mineralization[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(4):1179-1189.
[6] 蒙轸, 俞胜, 金治鹏, 等. 甘肃肃北贾公台金矿构造叠加晕特征及深部找矿预测[J]. 地质与勘探, 2015, 51(4):731-740.
[6] Meng Z, Yu S, Jin Z P, et al. Characteristics of primary superposed halos and ore-search prospect towards depth in the Jiagongtai gold deposit of Subei,Gansu Province[J]. Geology and Exploration, 2015, 51(4):731-740.
[7] 王超, 孙华山, 曹新志, 等. 山东招远上庄金矿原生晕特征及深部成矿预测[J]. 金属矿山, 2006(11):54-56,75.
[7] Wang C, Sun H S, Cao X Z, et al. Characteristics of primary halo of Zhaoyuan Shangzhuang gold deposit in Shandong and forecast of ore formation at depth[J]. Metal Mine, 2006(11):54-56,75.
[8] 张宏飞, 骆庭川, 李泽九, 等. 东秦岭花岗岩类元素丰度及其地质意义[J]. 矿物岩石, 1994, 14(4):1-8.
[8] Zhang H F, Luo T C, Li Z J, et al. Element abundances and geological significances of granitoids of eastern Qinling[J]. Mineralogy and Petrology, 1994, 14(4):1-8.
[9] 马宏卫, 吴宏伟, 邱顺才, 等. 河南桐柏老湾花岗岩地球化学特征及成因研究[J]. 矿产与地质, 2007, 21(1):65-69.
[9] Ma H W, Wu H W, Qiu S C, et al. Geochemical characteristics and genesis of Laowan granite in Tongbai,Henan[J]. Mineral Resources and Geology, 2007, 21(1):65-69.
[10] 滕浪, 陈建立, 陈守余. 北秦岭老湾金矿带变质岩原岩恢复及其形成过程[J]. 地质找矿论丛, 2019, 34(3):406-415.
[10] Teng L, Chen J L, Chen S Y. Restoration and formation process of metamorphic rocks in the Laowan gold ore belt,North Qinling[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(3):406-415.
[11] 张冠, 王登红, 李法岭. 秦岭东段老湾花岗岩体与老湾金矿的成因联系[J]. 地质与勘探, 2008, 44(4):50-54.
[11] Zhang G, Wang D H, Li F L. Laowan granitic body and association to genesis of laowan gold deposit in the eastern Qinling[J]. Geology and Prospecting, 2008, 44(4):50-54.
[12] 陈良, 戴立军, 王铁军, 等. 河南省老湾金矿床地球化学特征及矿床成因[J]. 现代地质, 2009, 23(2):277-284.
[12] Chen L, Dai L J, Wang T J, et al. Geochemical characteristics and genesis of the laowan gold deposit in Henan Province[J]. Geoscience, 2009, 23(2):277-284.
[13] 陈加伟, 孙保平, 李佩, 等. 河南老湾金矿床成矿流体性质与同位素地球化学示踪[J]. 岩石矿物学杂志, 2017, 36(5):713-724.
[13] Chen J W, Sun B P, Li P, et al. The properties of ore-forming fluids and isotope geochemical tracing of the Laowan gold deposit,Henan Province[J]. Acta Petrologica et Mineralogica, 2017, 36(5):713-724.
[14] 谢巧勤, 徐晓春, 李晓萱, 等. 河南老湾金矿床稀土元素地球化学对成矿物质来源的示踪[J]. 中国稀土学报, 2005, 23(5):636-640.
[14] Xie Q Q, Xu X C, Li X X, et al. Rare earth element geochemical characteristics of laowan gold deposit in Henan Province:Trace to source of ore-forming materials[J]. Journal of the Chinese Rare Earth Society, 2005, 23(5):636-640.
[15] 郭鹏, 陈建立, 陈英男, 等. 河南老湾金矿带原生晕地球化学特征及深部找矿意义[J]. 金属矿山, 2022(1):205-212.
[15] Guo P, Chen J L, Chen Y N, et al. Geochemical characteristics and deep prospecting significance of primary halo in Laowan gold metallogenic belt,Henan Province[J]. Metal Mine, 2022(1):205-212.
[16] 韩存强, 陈永品, 张学智. 河南省桐柏县老湾-鸿仪河金矿带原生晕研究[R]. 河南省地质矿产厅第三地质调查队. 2008.
[16] Han C Q, Chen Y P, Zhang X Z. Study on primary halo of Laowan-Hongyihe gold deposit belt,Tongbai County,Henan Province[R]. The Third Geological Survey Team of Henan Department of Geology and Mineral Resources. 2008.
[17] 毛政利, 魏亮, 赖健清, 等. 凤凰山铜矿床北区剖面原生叠加晕特征研究[J]. 金属矿山, 2010(7):87-90,102.
[17] Mao Z L, Wei L, Lai J Q, et al. Study on the characteristics of sectional primary overlap halo in the north of Fenghuangshan copper deposit[J]. Metal Mine, 2010(7):87-90,102.
[18] 赵江南. 滇西羊拉铜矿矿体地质地球化学特征及深部找矿预测[D]. 武汉: 中国地质大学(武汉), 2012.
[18] Zhao J N. Geological and geochemical characteristics and deep prospecting prediction of Yangla copper deposit in western Yunnan[D]. Wuhan: China University of Geosciences(Wuhan), 2012.
[19] 谭亲平, 夏勇, 王学求, 等. 黔西南灰家堡金矿田成矿构造模式及构造地球化学研究[J]. 大地构造与成矿学, 2017, 41(2):291-304.
[19] Tan Q P, Xia Y, Wang X Q, et al. Tectonic model and tectonic-geochemistry characteristics of the Huijiabao gold orefield,SW Guizhou Province[J]. Geotectonica et Metallogenia, 2017, 41(2):291-304.
[20] 李惠, 张文华, 刘宝林, 等. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J]. 地质与勘探, 1999, 35(1):32-35.
[20] Li H, Zhang W H, Liu B L, et al. The study on axial zonality sequence of primary halo and some cri teria for the application of this sequence for major types of gold deposits in China[J]. Geology and Exploration, 1999, 35(1):32-35.
[21] 李惠, 张国义, 禹斌. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M]. 北京: 地质出版社, 2006.
[21] Li H, Zhang G Y, Yu B. Structural superimposed halo model for deep blind ore prediction in gold mining area and its prospecting effect[M]. Beijing: Geological Publishing House, 2006.
[22] 李申, 赵润东, 宋岳庭, 等. 相关性分析、聚类分析、因子分析的可靠性对比——以嘎拉勒和躬琼左波两条剖面为例[J]. 地质与勘探, 2018, 54(3):574-583.
[22] Li S, Zhao R D, Song Y T, et al. Reliability comparison of correlation,clustering and factor analyses for lithogeochemistry:Examples of two profiles in galale and gongqiongzuobo,Tibet[J]. Geology and Exploration, 2018, 54(3):574-583.
[23] 姚玉增, 巩恩普, 梁俊红, 等. R型因子分析在处理混杂原生晕样品中的应用——以河北丰宁银矿为例[J]. 地质与勘探, 2005, 41(2):51-55.
[23] Yao Y Z, Gong E P, Liang J H, et al. Application of r-factor analysis in handing mixed samples of primary halo—A case study of Fengning silver deposit[J]. Geology and Exploration, 2005, 41(2):51-55.
[24] 董庆吉, 陈建平, 唐宇. R型因子分析在矿床成矿预测中的应用——以山东黄埠岭金矿为例[J]. 地质与勘探, 2008, 44(4):64-68.
[24] Dong Q J, Chen J P, Tang Y. Application of r type factor analyses in mineralization prognosis:By an example of huangbuling gold deposit,Shandong Province[J]. Geology and Prospecting, 2008, 44(4):64-68.
[25] 肖高强, 张小兵, 李忠, 等. 因子分析在1∶25万丽江市幅区域地球化学数据解释中的应用[J]. 云南大学学报:自然科学版, 2017, 39(S2):175-179.
[25] Xiao G Q, Zhang X B, Li Z, et al. Application of factor analysis to the interpretation of regional geochemical date in 1∶250,000 Lijiang sheet[J]. Journal of Yunnan University:Natural Sciences Edition, 2017, 39(S2):175-179.
[26] 李彦伟, 罗先熔, 黄学强, 等. 因子分析在青海尕大阪矿区找矿中的应用[J]. 地质找矿论丛, 2012, 27(3):361-365.
[26] Li Y W, Luo X R, Huang X Q, et al. Application of factor analysis to ore exploration in the Gadaban claim[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(3):361-365.
[27] 卿成实. 甘肃玛曲大水金矿原生晕特征及深部找矿预测[D]. 成都: 成都理工大学, 2012.
[27] Qing C S.The primary halo characteristics and deep prospecting of dashui gold deposit in Maqu, Gansu Province,China[D]. Chengdu: Chengdu University of Technology, 2012.
[1] 张长江, 何剑锋, 聂逢君, 夏菲, 李卫东, 汪雪元, 张鑫, 钟国韵. 基于深度兴趣演化网络的成矿预测——以西澳表生钙结岩型铀矿为例[J]. 物探与化探, 2025, 49(2): 259-269.
[2] 卢文东, 孙斌, 李光杰, 魏伟, 夏小兴, 潘丙磊, 沙晴, 吕小红, 李元春, 乔娜. 因子分析在地球化学分区中的应用及指示意义——以山东省莒县—五莲地区1:5万水系沉积物测量数据为例[J]. 物探与化探, 2025, 49(2): 411-421.
[3] 廖启林, 黄顺生, 许伟伟, 崔晓丹, 金洋, 刘玲, 汪媛媛, 李文博, 周强. 江苏省里下河地区富硒土壤元素地球化学特征及其成因机制[J]. 物探与化探, 2024, 48(4): 1114-1124.
[4] 张文斌, 周贤君, 侯翠霞, 王宁祖, 孙平原, 赵振琯, 何碧. 甘肃北山老君庙北金矿土壤地球化学特征及找矿前景[J]. 物探与化探, 2024, 48(4): 945-953.
[5] 张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
[6] 杨济远, 胡新茁, 周敬, 齐朋超, 李泽阳, 孟家葆, 许凡, 张会彬, 齐慧云. 冀西北宣化盆地髫髻山组粗面岩年代学、地球化学特征及其地质意义[J]. 物探与化探, 2024, 48(1): 1-14.
[7] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[8] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[9] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[10] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[11] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[12] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[13] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[14] 肖睿, 庞守吉, 祝有海, 张帅, 邹燚. 新疆甜水海地区红山湖泉水化学特征及其意义[J]. 物探与化探, 2023, 47(1): 39-46.
[15] 马常莲, 周金龙, 曾妍妍, 任贵兵, 王松涛. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com