E-mail Alert Rss
 

物探与化探, 2025, 49(4): 896-901 doi: 10.11720/wtyht.2025.1277

方法研究信息处理仪器研制

不规则测线视电阻率数据的3D反演方法

郭军旗,1, 范本峰2, 鲁恺,3, 王鹏3, 翟好杰3

1.库车市科兴煤炭实业有限责任公司, 新疆 阿克苏 842008

2.新疆维吾尔自治区地质矿产勘查开发局第九地质大队, 新疆 乌鲁木齐 830000

3.西安科技大学 地质与环境学院, 陕西 西安 710000

A 3D inversion method for apparent resistivity data along irregular survey lines under complex terrain

GUO Jun-Qi,1, FAN Ben-Feng2, LU Kai,3, WANG Peng3, ZHAI Hao-Jie3

1. Kuche Kexing Coal Industry Co., Ltd., Aksu 842008, China

2. No. 9 Geological Team of Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, Urumqi 830000, China

3 Xi'an University of Science and Technology, College of Geology and Environment, Xi'an 710000, China

通讯作者: 鲁恺(1992-),男,2022年毕业于中国地质大学(武汉),主要从事电磁法勘探正反演技术及应用研究工作。Email:lukai@xust.edu.cn

第一作者: 郭军旗(1985-),男,2011年毕业于河南理工大学,主要从事电磁法勘探与矿井防治水工作。Email:guojunqi_kx@126.com

责任编辑: 王萌

收稿日期: 2024-06-26   修回日期: 2024-10-12  

基金资助: 陕西省自然科学基础研究计划(2024JC-YBQN-0291)
陕西省自然科学基础研究计划(2024JC-YBMS-200)

Received: 2024-06-26   Revised: 2024-10-12  

摘要

高密度电阻率法已成为滑坡结构调查的主要地球物理方法之一,但是受滑坡复杂地形、地表崩积物的影响,实际工作中测线难以沿直线规整布置,导致视电阻率计算结果出现偏差。为了最大程度降低不规则测线对最终结果的影响,笔者提出了一种实测数据的3D反演方案,通过寻找完全测线最小包围面积矩形,最小化3D网格剖分;通过增大测线垂直方向的正则化参数,抑制模型参数在垂直方向上的变化。数值模拟结果表明,相比传统的2D反演方案,本研究提出的3D反演方案可以显著提升滑带的识别精度。白水河滑坡的实测结果验证了该方法的有效性。

关键词: 高密度电阻率法; 复杂地形; 不规则测线; 3D反演; 滑坡

Abstract

The electrical resistivity tomography (ERT) method has become the primary geophysical technique for landslide structure investigation. However, the complex terrain of landslides and the impacts of collapsed surface features render it challenging to arrange survey lines orderly along a straight line in practice. This leads to deviations in the calculations of apparent resistivity. To minimize the impacts of irregular survey lines on the final results, this study developed a scheme for the 3D inversion of measured data. Specifically, this scheme minimized 3D grid subdivision by identifying the rectangle enclosing the minimum area of complete survey lines. Meanwhile, this scheme suppressed the changes in model parameters in the vertical direction by increasing the regularization parameters along the vertical direction of the survey lines. Numerical simulation results indicate that, compared to the traditional 2D inversion scheme, the proposed 3D inversion scheme can significantly improve the identification accuracy of the sliding zone. The measured results of the Baishuihe landslide have verified the effectiveness of the proposed method.

Keywords: electrical resistivity tomography; complex terrain; irregular survey line; 3D inversion; landslide

PDF (3037KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭军旗, 范本峰, 鲁恺, 王鹏, 翟好杰. 不规则测线视电阻率数据的3D反演方法[J]. 物探与化探, 2025, 49(4): 896-901 doi:10.11720/wtyht.2025.1277

GUO Jun-Qi, FAN Ben-Feng, LU Kai, WANG Peng, ZHAI Hao-Jie. A 3D inversion method for apparent resistivity data along irregular survey lines under complex terrain[J]. Geophysical and Geochemical Exploration, 2025, 49(4): 896-901 doi:10.11720/wtyht.2025.1277

0 引言

高密度电阻率法,作为一种成熟可靠的地球物理勘探技术,因其数据量丰富、抗干扰能力出众、采集效率高等显著优势[1-3],已成为滑坡结构调查的关键技术之一[4-6]。然而,滑坡区域的地形通常复杂多变,在实际勘探过程中,受到地形起伏、地貌特征等多重因素的影响,测线往往难以达到理想的规则直线布置,影响反演结果的准确性与滑坡结构的解释精度。

传统高密度电阻率法的数据处理广泛采用二维反演技术[7-8]。该技术结合了2.5D正演与2D反演方案,以实现对实测视电阻率数据的快速稳健反演[9-10]。在2.5D正演模型中,通常假设电阻率在垂直于测线方向(y方向)上保持恒定,而电极则沿x方向线性布置,通过傅里叶变换进行高效的正演计算[11]。然而,在复杂地形条件下,电极的布置往往难以保持直线,这导致部分电极在y方向上的位置出现偏移。如果继续采用2.5D正演模型来近似实际的电极布置,可能会导致正演结果出现明显偏差,进而影响反演电阻率的准确性。随着计算机算力的快速增强,三维反演技术已逐步应用于高密度电阻率法的地质调查任务中[12-13]。三维反演方案通过有限元方法或有限差分方法实现三维正演,并利用平滑约束等先验信息优化反演过程[14]。该技术能够显著提升在实际地质调查中,任意电极布局下的视电阻率正演计算精度,并能有效处理更为复杂的地下结构的反演问题[15-16]。然而,算法的计算成本随着模型维度的增加而呈指数级增长,这使得其在时间消耗上面临较大挑战[17]。此外,当使用二维测线数据进行三维反演时,数据在y方向(垂直测线方向)的分辨率受限,这可能会影响到三维模型的准确性和可靠性。

本研究针对不规则测线反演问题的特点,提出了一种优化的三维反演方案。通过寻找测线最小包围面积矩形的坐标转换算法,实现3D模型的最少网格节点剖分,降低计算成本。此外,通过增加y方向平坦度矩阵的权重系数,提升反演结果的稳健性。数值模拟与白水河滑坡上的实测结果表明,该技术可有效提升在复杂地形条件下高密度电阻率法的应用效果。

1 不规则测线视电阻率数据的3D反演方法

1.1 最小化网格剖分节点

在实际调查中,滑坡体复杂的地形、广泛分布的植被和地表散落的巨石使得测线难以沿直线布置。此时,任意分布的电极节点在布置时必须使用GNSS RTK技术进行精确定位,其定位误差一般在10 cm以内[18]。在使用国内通用CGCS2000系统时,一系列电极的位置被记录为投影坐标(东坐标,北坐标)格式(见图1a)。此时,为了使模型尽可能小,需要寻找测线的最小包围面积矩形,并通过坐标转换将矩形的左下顶点平移至坐标原点,两条相邻边旋转至x方向与y方向(图1b)。然后,以新的坐标系统作为xy平面进行网格剖分(图1c)。其中,主要难点包括寻找最小包围面积矩形以及坐标转换。坐标旋转可通过构造旋转矩阵与线性算法实现,见式(1):

$\left[\begin{array}{l}x\text{'}\\ y\text{'}\end{array}\right]=\left[\begin{array}{ll}cos\theta & -sin\theta \\ sin\theta & cos\theta \end{array}\right]\left[\begin{array}{l}x\\ y\end{array}\right]$

式中:x'y'为新坐标;xy为初始坐标最小包围面积矩形,可采用开源的Andrew's monotone chain算法实现[19]。在实际调查中,矩形也可根据地质情况选取,y方向应该选择电阻率变化更小的方向。

图1

图1   不规则测线视电阻率数据的3D反演技术流程示意

a—投影坐标系下的电极分布;b—最小包围面积矩形与转换后的坐标系;c—转换坐标后的网格剖分;d—最大化y方向正则化参数后3D反演得到的电阻率模型;e—提取到的测线底部的电阻率数据;f—将e中坐标转为2D测线长度与高程的电阻率断面

Fig.1   Schematic of the 3D inversion process for resistivity data from irregular survey lines

a—the electrode distribution in the projected coordinate system; b—the minimum enclosing rectangular area and the transformed coordinate system; c—the grid division after coordinate transformation; d—the resistivity model obtained from 3D inversion after maximizing the regularization parameter in the y direction; e—the resistivity data extracted at the bottom of the survey line; f—the resistivity cross-section diagram where the coordinates in e are converted into 2D survey line length and elevation


1.2 3D反演方法

电阻率数据的三维反演广泛采用平滑约束最小二乘优化方法[20]。其中,地下空间被剖分为规则网格,x方向与y方向的网格间隔一般需小于1/4电极距,z方向网格间距剖分由浅至深可逐步增加。有限单元法被应用于3D正演计算中。采用改进的高斯—牛顿法实现优化过程[21],其迭代优化方程如式(2):

$({J}^{T}J+\lambda {F}_{R})\Delta {q}_{k}={J}^{T}{R}_{d}g-\lambda {F}_{R}{q}_{k-1}$

式中:J为雅克比矩阵,可通过互易定理计算。λ为阻尼系数向量,g为数据残差。FR为平坦度矩阵,可写为式(3):

${F}_{R}={\alpha }_{x}{{C}^{T}}_{x}{R}_{m}{C}_{x}+{\alpha }_{y}{{C}^{T}}_{y}{R}_{m}{C}_{y}+{\alpha }_{z}{{C}^{T}}_{z}{R}_{m}{C}_{z}$

式中:Cx,Cy,Cz分别为模型x,y,z方向的平坦度矩阵;αx,αy,αz分别为他们的权重。由于2D测线数据无法有效约束整个3D空间的模型电阻率,其分辨率主要沿x方向(测线方向),对y方向的约束不足,因此必须设置较大的αy以提高反演结果的稳健性。在本研究中,设置αyx=4,此时反演电阻率主要沿x方向变化。至此,可得到2D测线及周边区域的3D反演电阻率模型(见图1d)。由于测线以外区域的模型可靠性较低,因此在最终成图时必须仅保留测线下部的模型电阻率数据,并在坐标转换后进行可视化(见图1ef)。

2 数值模拟

2.1 模型建立

建立滑坡体模型如图2所示,滑坡体可分为堆积层与基岩两部分,其中堆积层电阻率设置为30 Ω·m,基岩电阻率设置为100 Ω·m。堆积层在滑坡上缘厚度较小,约为1.25 m,在下缘厚度逐渐增大至11 m。滑坡3D模型的x方向长度20 m,y方向长度2.5 m,假定滑坡结构电阻率在y方向上是无变化的。模型共设置电极21个,极距为1.03 m。受地形与障碍物的影响,测线在x=10 m,y=0 m位置处未能继续沿直线布置,转角约38°。

图2

图2   滑坡体数值模型与不规则测线示意

Fig.2   Schematic of numerical model of landslide bodies and irregular survey lines


2.2 模型计算

采用有限单元法对模型进行正演模拟,其中视电阻率数据采用温纳装置,数据总层数7层,总视电阻率数据点63个。图3a显示了测线底部模型的2D图,图3b为视电阻率断面。视电阻率断面可在一定程度上体现岩土体分界特征,浅部堆积视电阻率一般为31 Ω·m左右,接近模型设置电阻率;深部视电阻率最大约65 Ω·m。视电阻率曲线在测线中部向下扭曲明显,这很可能是由于测区扭曲所致。

图3

图3   数值模拟结果

a—测线底部电阻率模型,其中蓝色区域为30 Ω·m,红色为100 Ω·m;b—将3D正演视电阻率数据转为2D断面显示;c—平滑约束2D反演断面,其中黑色线条为滑带位置在反演断面上投影位置;d—本研究中3D反演方法得到的电阻率断面

Fig.3   Numerical simulation results

a—shows the resistivity model at the bottom of the survey line, where the blue area represents 30 Ω·m and the red area represents 100 Ω·m; b—shows the 2D cross-sectional display of the 3D forward modeling apparent resistivity data; c—shows the smooth-constrained 2D inversion cross-section, where the black lines represent the projected positions of the fault zones on the inversion cross-section; d—shows the resistivity cross-section obtained by the 3D inversion method in this study


分别采用平滑约束2D反演方法与本研究提出的3D反演方法进行反演,结果如图3c3d所示。采用传统平滑约束2D反演时,反演电阻率断面在扭曲段及两侧无法有效识别滑坡结构分界面,最大偏离误差约为1倍极距以上。采用本研究提出的3D反演方法进行计算后,提取测线下部电阻率数据进行绘图,结果对滑坡体结构分层效果显著提升,有效避免了传统2D方法中电性分层的虚假扭曲特征。

3 工程实例

白水河滑坡是三峡库区内典型的堆积型滑坡,位于湖北省宜昌市秭归县沙镇溪乐丰村。滑坡位于百福坪背斜北翼与秭归向斜交汇的长江南岸向斜坡上。出露岩层主要为侏罗系下统香溪组(J1x)中厚层状粉砂岩、夹薄层状泥质粉砂岩。滑坡整体形态呈“舌”状(见图4),后缘以岩性分界为界限(高程约400 m),前缘直抵长江。滑坡剖面上陡下缓,总体坡度约为30°,主滑方向为N32°E。钻孔资料显示,白水河滑坡发育有两层滑带,浅层滑带为坡体堆积物(碎石土或块石)与下部块裂岩的接触带,厚度一般为2 m左右,埋深一般在16 m左右。滑带物质为碎石土,结构紧实,不透水。深部滑层为块裂岩与下伏基岩(粉砂岩)的接触面,厚度一般在1 m左右,埋深在20~35 m左右[22]

图4

图4   白水河滑坡地表地形与实测测线位置

Fig.4   Surface topography of the Baishui River landslide and positions of actual survey lines


为了调查滑坡结构,2条高密度电阻率法测线被布置于滑坡体上,受滑体上广泛分布的植被与复杂地形影响,测线扭曲严重,测线详见图4。ERT-1测线沿垂直于滑动方向布置,测线极距为5 m,全长595 m。ERT-2测线沿滑动方向布置,测线极距为5 m,全长445 m。图5为本研究提出的3D反演方法对扭曲测线实测数据的反演结果。结果显示,反演电阻率断面从浅到深可以被划分为3个电性层。其中,第一层大致位于地表到大约20 m的深度,电阻率通常在30~80 Ω·m之间,主要对应于浅层的碎石土层。第二电性层深度大致位于15~30 m,电阻率通常在80~200 Ω·m之间,主要对应了块裂岩层。第三电性层埋深一般大于30 m,电阻率值200~400 Ω·m,对应基岩层。反演电阻率断面的电性分层特征与测线周边ZK1、ZK4、ZK5揭露的地层情况吻合良好。

图5

图5   不规则测线实测数据反演结果

a—ERT-1测线结果;b—ERT-2测线结果

Fig.5   Inversion results of actual measured data from irregular survey lines

a—shows the results for ERT-1 survey line; b—shows the results for ERT-2 survey line


4 结论

针对复杂地形滑坡上的不规则测线视电阻率数据的处理问题,提出了一种基于3D反演的处理方案。通过数值模拟与工程实例研究,得到如下结论:

1)数值模拟结果表明,扭曲测线会导致视电阻率数据出现明显偏差,影响传统2D反演效果,使电性分层出现虚假扭曲异常,最多可偏差1倍极距以上。本研究提出的3D反演方法,可显著改善滑坡体结构的成像效果,避免虚假扭曲异常出现。

2)现场实测结果表明,本研究提出的3D反演方法在处理白水河滑坡上不规则测线实测数据时,反演结果可清晰识别碎石土、块裂岩、基岩的分界面信息。测线周边的3个钻孔验证了电阻率结果的准确性。

参考文献

杨振威, 严加永, 刘彦, .

高密度电阻率法研究进展

[J]. 地质与勘探, 2012, 48(5): 969-978.

[本文引用: 1]

Yang Z W, Yan J Y, Liu Y, et al.

Research progresses of the high-density resistivity method

[J]. Geology and Exploration, 2012, 48(5): 969-978.

[本文引用: 1]

底青云, 倪大来, 王若, .

高密度电阻率成像

[J]. 地球物理学进展, 2003, 18(2): 323-326.

Di Q Y, Ni D L, Wang R, et al.

High-density resistivity image

[J]. Progress in Geophysics, 2003, 18(2): 323-326.

Ducut J D, Alipio M, Go P J, et al.

A review of electrical resistivity tomography applications in underground imaging and object detection

[J]. Displays, 2022, 73: 102208.

[本文引用: 1]

郭秀军, 贾永刚, 黄潇雨, .

利用高密度电阻率法确定滑坡面研究

[J]. 岩石力学与工程学报, 2004, 23(10): 1662-1669.

[本文引用: 1]

Guo X J, Jia Y G, Huang X Y, et al.

Application of multi-electrodes electrical method to detection of slide-face position

[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1662-1669.

[本文引用: 1]

李富, 周洪福, 葛华.

不同类型滑坡体的高密度电阻率法勘察电性特征

[J]. 物探与化探, 2019, 43(1): 215-221.

Li F, Zhou H F, Ge H.

Electrical characteristics of different types of landslide bodies investigated by high-density electrical method

[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 215-221.

刘栋, 张帆宇, 陈立, .

高密度电法在黄土滑坡结构探测与三维建模中的应用

[J]. 地球物理学进展, 2022, 37(4): 1742-1748.

[本文引用: 1]

Liu D, Zhang F Y, Chen L, et al.

Application of high-density electrical method in detecting and 3D modeling of loess landslide

[J]. Progress in Geophysics, 2022, 37(4): 1742-1748.

[本文引用: 1]

高明亮, 于生宝, 郑建波, .

PSBP在高密度电阻率法二维反演中的应用

[J]. 吉林大学学报: 工学版, 2015, 45(6): 2026-2033.

[本文引用: 1]

Gao M L, Yu S B, Zheng J B, et al.

Application of PSBP method in high-density two-dimensional resistivity inversion

[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45(6): 2026-2033.

[本文引用: 1]

张卫国, 匡伶俐.

高密度电阻率法二维层析成像研究与应用

[J]. 煤田地质与勘探, 2008, 36(2): 55-58.

[本文引用: 1]

Zhang W G, Kuang L L.

Research and application of two-dimensional high density resistivity tomography

[J]. Coal Geology & Exploration, 2008, 36(2): 55-58.

[本文引用: 1]

Arjwech R, Phothaworn T, Chaisuriya S, et al.

Evaluation of slope susceptibility using 2D electrical resistivity tomography supplemented with spatial resistivity change

[J]. Geotechnical and Geological Engineering, 2023, 41(7): 4023-4039.

[本文引用: 1]

Cardarelli E, Fischanger F.

2D data modelling by electrical resistivity tomography for complex subsurface geology

[J]. Geophysical Prospecting, 2006, 54(2): 121-133.

[本文引用: 1]

Yuan Y, Qiang J K, Tang J T, et al.

2.5D direct-current resistivity forward modelling and inversion by finite-element-infinite-element coupled method

[J]. Geophysical Prospecting, 2016, 64(3): 767-779.

[本文引用: 1]

李忠平.

基于高密度电法温纳装置的三维电阻率反演应用

[J]. 地球物理学进展, 2020, 35(3): 970-975.

[本文引用: 1]

Li Z P.

Application of 3D resistivity inversion based on Winner device of high density electricity method

[J]. Progress in Geophysics, 2020, 35(3): 970-975.

[本文引用: 1]

戴前伟, 肖波, 冯德山, .

基于二维高密度电阻率勘探数据的三维反演及应用

[J]. 中南大学学报: 自然科学版, 2012, 43(1): 293-300.

[本文引用: 1]

Dai Q W, Xiao B, Feng D S, et al.

3D inversion of high density resistivity method based on 2D exploration data and its application

[J]. Journal of Central South University: Science and Technology, 2012, 43(1): 293-300.

[本文引用: 1]

王新宇, 王程, 毛玉蓉, .

基于混合网格有限元的直流电阻率法三维正演研究

[J]. 煤田地质与勘探, 2022, 50(5): 136-143.

[本文引用: 1]

Wang X Y, Wang C, Mao Y R, et al.

3D forward modeling of DC resistivity method based on finite element with mixed grid

[J]. Coal Geology & Exploration, 2022, 50(5): 136-143.

[本文引用: 1]

Shin Y, Shin S, Cho S J, et al.

Application of 3D electrical resistivity tomography in the yeoncheon titanomagnetite deposit, south Korea

[J]. Minerals, 2021, 11(6): 563.

[本文引用: 1]

Rupesh, Tiwari P, Sharma S P.

High-resolution quasi-3D electric resistivity tomography for deciphering groundwater potential zones in lateritic terrain

[J]. Natural Resources Research, 2021, 30(5): 3339-3353.

DOI:10.1007/s11053-021-09888-4      [本文引用: 1]

Groundwater is under constant threat of exploitation with increasing demands. Therefore, there is a need for more advanced methods for exploring potential groundwater zones to meet people requirements. Groundwater in hard terrain areas is present in fractured zones, whereas in lateritic terrain it occurs in layered strata. Electrical resistivity tomography (ERT) is an advanced geophysical technique used in our present study; a quasi-3D ERT survey was conducted using different arrays. 2D Geophysical data were acquired along 18 ERT profiles of Wenner and Wenner-Schlumberger arrays and 13 ERT profiles of Dipole-Dipole array. Each profile of 200 m length was kept parallel to each other at 5 m spacing in the E-W direction. The inverted response was generated and, based on resistivity distribution, different geological layers of clay, sand and laterite were delineated using various ERT arrays. A conductive zone was marked as a potential aquifer zone at depths of 7-10 m below ground level. Thus, the quasi-3D geoelectrical approach was applied successfully in a lateritic environment for deciphering potential groundwater zones.

Turarova M K, Mirgalikyzy T, Mukanova B G, et al.

Evaluation of the 3D topographic effect of homogeneous and inhomogeneous media on the results of 2D inversion of electrical resistivity tomography data

[J]. Modelling and Simulation in Engineering, 2022, 2022(1): 5196686.

[本文引用: 1]

黄凯.

GNSS-RTK物探测量独立工程坐标系统的建立

[J]. 测绘与空间地理信息, 2022, 45(5): 77-79.

[本文引用: 1]

Huang K.

The construction of independent engineering coordinate system in GNSS-RTK geophysical measurements

[J]. Geomatics & Spatial Information Technology, 2022, 45(5): 77-79.

[本文引用: 1]

Akl S.

Inherently parallel geometric problems

[R]. Technical Report, 2004.

[本文引用: 1]

Loke M H, Papadopoulos N, Wilkinson P B, et al.

The inversion of data from very large three-dimensional electrical resistivity tomography mobile surveys

[J]. Geophysical Prospecting, 2020, 68(8): 2579-2597.

DOI:10.1111/1365-2478.13008      [本文引用: 1]

New developments in mobile resistivity meter instrumentation have made it possible to survey large areas with dense data coverage. The mobile system usually has a limited number of electrodes attached to a cable that is pulled along behind an operator so that a large area can be covered within a short time. Such surveys can produce three-dimensional datasets with hundreds of thousands of electrodes positions and data points. Similarly, the inverse model used to interpret the data can have several hundred thousand cells. It is impractical to model such large datasets within a reasonable time on microcomputers used by many small companies employing standard inversion techniques. We describe a model segmentation technique that subdivides the finite-element mesh used to calculate the apparent resistivity and Jacobian matrix values into a number of smaller meshes. A fast technique that optimizes the calculation of the Jacobian matrix values for multi-channel systems was also developed. A one-dimensional wavelet transform method was then used to compress the storage of the Jacobian matrix, in turn reducing the computer time and memory required to solve the least-squares optimization equation to determine the inverse model resistivity values. The new techniques reduce the calculation time and memory required by more than 80% while producing models that differ by less than 1% from that obtained using the standard inversion technique with a single mesh. We present results using a synthetic model and a field dataset that illustrates the effectiveness of the proposed techniques.

Loke M H, Wilkinson P B, Kuras O, et al.

The use of a semi-structured finite-element mesh in 3-D resistivity inversion

[J]. Geophysical Prospecting, 2022, 70(9): 1580-1601.

[本文引用: 1]

卢书强, 易庆林, 易武, .

库水下降作用下滑坡动态变形机理分析——以三峡库区白水河滑坡为例

[J]. 工程地质学报, 2014, 22(5): 869-875.

[本文引用: 1]

Lu S Q, Yi Q L, Yi W, et al.

Study on dynamic deformation mechanism of landslide in drawdown of reservoir water level:Take Baishuihe landslide in Three Gorges Reservoir area for example

[J]. Journal of Engineering Geology, 2014, 22(5): 869-875.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com