Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 330-339    DOI: 10.11720/wtyht.2025.1361
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于多参数融合的弱弹性介质激发井深设计方法
包洪刚()
中石化石油工程地球物理有限公司 科技研发中心,江苏 南京 211112
A multiparameter fusion methodology of well depth design for seismic excitation in weakly elastic media
BAO Hong-Gang()
R&D Center of Science and Technology,Sinopec Geophysical Corporation,Nanjing 211112,China
全文: PDF(6026 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

弱弹性介质薄互层较多,激发的地震波能量衰减快、优势频带窄,造成地震资料分辨率低,如何选择较好的激发岩性是改善激发效果的关键。为此,以苏北探区为例,分析水网地区影响资料品质的主要因素,通过微测井调查测定高速层顶界面,采用静力触探方法和岩性取心优选优势岩性段,量化分析相关子波的倍频程、分辨率、主瓣与旁瓣能量比、子波清晰度等,建立地震子波属性与激发岩性的匹配关系,优选地震波传播速度高、岩土弹性属性好、子波频带宽的岩性面,建立工区表层岩性平面图,逐点设计激发井深,确保宽频激发。将以上技术应用于YA三维、SDX三维激发井深设计,所获得的单炮频率归一性较好,地震剖面目的层优势频带拓宽了10 Hz以上,提升了1.5个倍频程。这一结果表明,水网地区“弱中选优”的激发策略可以有效地改善在弱弹性介质中的激发效果,提高地震资料分辨率和成像精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包洪刚
关键词 水网地区弱弹性介质高分辨率激发岩性    
Abstract

Due to numerous thin interbeds in weakly elastic media,seismic excitation typically yields rapidly attenuated seismic wave energy and a narrow dominant frequency band,resulting in low-resolution seismic data.Therefore,selecting a favorable lithology plays a crucial role in improving the seismic excitation effect.This study explored the dominant factors influencing the quality of seismic data obtained from the northern Jiangsu exploration area,a region with a dense river system.Specifically,this study determined the top boundary of the high-velocity layer based on microlog surveys and the dominant lithologic member using the cone penetration test and lithologic coring.It quantitatively analyzed seismic wavelet attributes,including octave band,resolution,main-to-side lobe energy ratio,and wavelet clarity,establishing their matching relationship with the lithology for seismic excitation.By selecting a lithologic surface featuring a high seismic wave propagation velocity,a favorable elastic property,and a wide frequency band in the study area,it plotted a surface lithology map for pointwise well depth design,ensuring wide-frequency excitation.The above techniques were applied to well depth design for seismic excitation in the YA and SDX areas,achieving well-normalized single-shot frequencies and widening the dominant frequency band of the target layer in the seismic profile by over 10 Hz,with an increase of 1.5 octave bands.The results show that the excitation strategy of "selecting the dominant lithology from weakly elastic media" in regions with dense river systems can effectively enhance the seismic excitation effect in weakly elastic media,thereby improving the imaging accuracy and resolution of seismic data.

Key wordsa region with a dense river system    weakly elastic medium    high resolution    lithology for seismic excitation
收稿日期: 2024-09-09      修回日期: 2025-02-10      出版日期: 2025-04-20
ZTFLH:  P631.4  
基金资助:中石化石油工程技术服务有限公司科研项目“江苏下扬子古潜山关键地震技术研究”(SG18-80X)
作者简介: 包洪刚(1981-),男,现主要从事地震采集方法研究工作。Email:js-baohg.osgc@sinopec.com
引用本文:   
包洪刚. 基于多参数融合的弱弹性介质激发井深设计方法[J]. 物探与化探, 2025, 49(2): 330-339.
BAO Hong-Gang. A multiparameter fusion methodology of well depth design for seismic excitation in weakly elastic media. Geophysical and Geochemical Exploration, 2025, 49(2): 330-339.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1361      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/330
参数 含义 单位
a 炸药爆炸形成的球形空腔的半径 m
P0 作用于空腔内壁上的初始压力 N·m-2
E 杨氏模量 Pa
r 波的传播距离 m
t 波的传播时间 s
k 圆频率 Hz
Table 1  质点位移函数中的参数含义
Fig.1  不同激发岩性单炮记录
Fig.2  不同激发岩性单炮频谱分析
h/m 岩性物理参数 理论子波参数
ρ/(kg·m-3) vp/(m·s-1) vs/(m·s-1) vp/vs E/MPa σ fmax/Hz fm/Hz
10.1~10.3 1.983 1 645.514 909.509 1.809 4.200 0.280 93 55
11.1~11.3 1.895 1 605.104 892.710 1.798 3.854 0.276 74 44
12.1~12.3 1.754 1 552.143 948.353 1.637 3.793 0.202 61 36
13.1~13.3 1.809 1 600.750 960.753 1.666 3.986 0.192 54 32
14.1~14.3 1.891 1 672.460 1 006.892 1.661 4.248 0.197 50 29
15.1~15.3 1.818 1 688.450 1 038.967 1.625 4.610 0.195 45 26
16.1~16.3 1.999 1 700.342 1 056.778 1.609 5.292 0.185 41 24
Table 2  岩性物理参数和理论地震子波参数
Fig.3  岩性优选流程
Fig.4  微测井、静力触探与岩性取心综合解释成果
Fig.5  微测井数据自相关子波
Fig.6  微测井相关子波单道显示
Fig.7  4种不同相关子波波形
Fig.8  相关子波量化分析
Fig.9  三维表层岩性结构模型
Fig.10  激发岩性优选前(a)、后(b)单炮主频
Fig.11  YA三维新(a)、老(b)叠前时间偏移剖面
Fig.12  YA三维新、老偏移剖面频谱分析
Fig.13  SDX三维新(a)、老(b)偏移剖面
Fig.14  SDX目标层 T 3 3三维新、老剖面频谱分析
[1] 王益民. 基于不同地表介质震源子波响应的炸药激发效果影响因素研究[D]. 杭州: 浙江大学, 2017.
[1] Wang Y M. Study on influencing factors of explosive excitation effect based on seismic source wavelet response of different surface media[D]. Hangzhou: Zhejiang University, 2017.
[2] 高峻, 万应明, 黄波. 基于炸药激发子波特性选择激发井深[J]. 石油地球物理勘探, 2009, 44(S1):1-4.
[2] Gao J, Wan Y M, Huang B. Selection of excitation well depth based on the characteristics of explosive excitation wavelet[J]. Oil Geophysical Prospecting, 2009, 44(S1):1-4.
[3] 王晓华, 杨汝超, 吴建文, 等. 炸药震源激发子波特性研究及最佳激发井深选择[J]. 石油物探, 2000, 39(3):79-86,99.
[3] Wang X H, Yang R C, Wu J W, et al. The determination of dynamite source wavelet and a research on amplitude and frequency responses:Concurrent discussion of determination of optimum excitation depth[J]. Geophysical Prospecting for Petroleum, 2000, 39(3):79-86,99.
[4] 崔汝国, 王尚旭, 宁鹏鹏, 等. 炸药震源在济阳坳陷粘土介质中的激发理论初探[J]. 石油物探, 2009, 48(6):606-610.
[4] Cui R G, Wang S X, Ning P P, et al. Preliminary discussion on shooting theory for dynamite in clay medium of Jiyang Depression[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):606-610.
[5] 刘凯, 童思友, 刘怀山, 等. 复杂近地表区高分辨率地震勘探激发参数优选[J]. 地球物理学进展, 2013, 28(6):3040-3048.
[5] Liu K, Tong S Y, Liu H S, et al. The optimization of excitation parameters in the high-resolution seismic exploration on a complex near surface area[J]. Progress in Geophysics, 2013, 28(6):3040-3048.
[6] 薛野, 杨帆, 刘厚裕, 等. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3):608-617.
[6] Xue Y, Yang F, Liu H Y, et al. Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects[J]. Geophysical and Geochemical Exploration, 2022, 46(3):608-617.
[7] 陈楠. 三维空间内近地表激发井深设计插件的开发与应用[J]. 地球物理学进展, 2015, 30(2):940-946.
[7] Chen N. Three dimensional space in near surface excitation well depth design,development and application of the plug-in[J]. Progress in Geophysics, 2015, 30(2):940-946.
[8] 吕公河. 弱弹性介质中炸药震源大基距面积组合激发效果分析[J]. 石油地球物理勘探, 2011, 46(6):851-855.
[8] Lyu G H. Analysis of shooting effects of dynamite source with areal array of large length in weak elastic medium[J]. Oil Geophysical Prospecting, 2011, 46(6):851-855.
[9] 王文忠, 孙海川, 刘永亮. 黄土塬LA勘查区煤田地震勘探采集技术[J]. 物探与化探, 2018, 42(4):689-696.
[9] Wang W Z, Sun H C, Liu Y L. A study on coalfield seismic exploration parameter selection in LA exploration of loess tableland[J]. Geophysical and Geochemical Exploration, 2018, 42(4):689-696.
[10] 孙海川, 刘永亮, 李健. 二维地震采集参数的选择——以潮水盆地HW勘查区为例[J]. 物探与化探, 2016, 40(6):1144-1150.
[10] Sun H C, Liu Y L, Li J. 2D seismic acquisition parameter selection:A case study of HW exploration area in Chaoshui Basin[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1144-1150.
[11] 张剑, 刘梦花, 苏腾飞, 等. 山前带砾石区激发技术优化[J]. 物探与化探, 2014, 38(6):1228-1234.
[11] Zhang J, Liu M H, Su T F, et al. The optimization of the excitation technique for the gravel-bearing piedmont zone[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1228-1234.
[12] 张卫华, 马中高, 周枫, 等. 雷州半岛南部玄武岩岩石物性与激发地震波属性关系研究[J]. 地球物理学进展, 2021, 36(2):706-715.
[12] Zhang W H, Ma Z G, Zhou F, et al. Study on the relationship between the physical properties of basalt rocks and the properties of excited seismic waves in the southern Leizhou Peninsula[J]. Progress in Geophysics, 2021, 36(2):706-715.
[13] 梁亚南, 全建军, 彭志文. 泌阳凹陷王集地区高精度三维地震采集激发参数探讨[J]. 石油天然气学报, 2008, 30(3):237-239.
[13] Liang Y N, Quan J J, Peng Z W. A discussion of high accuracy 3D seismic acquisition of exploration parameters in Wangji area in Biyang Basin[J]. Journal of Oil and Gas Technology, 2008, 30(3):237-239.
[14] 冯晓强, 朱峰, 石一青, 等. 江苏探区影响地震资料分辨率因素研究与对策[J]. 石油物探, 2021, 60(S1):60-69.
[14] Feng X Q, Zhu F, Shi Y Q, et al. Study on the factors affecting the resolution of seismic data in Jiangsu exploration area and its countermeasures[J]. Geophysical Prospecting for Petroleum, 2021, 60(S1):60-69.
[15] 张志林, 刘斌, 何京国, 等. 青海都兰盐沼区地震采集关键技术研究[J]. 物探与化探, 2014, 38(3):510-515.
[15] Zhang Z L, Liu B, He J G, et al. A study of the key seismic acquisition technology in the salt marsh area of Dulan,Qinhai province[J]. Geophysical and Geochemical Exploration, 2014, 38(3):510-515.
[16] 王咸彬. 准噶尔盆地南缘山前带激发因素分析[J]. 勘探地球物理进展, 2008, 31(1):59-64.
[16] Wang X B. Discussion on shooting factors in the foothill in southern Junggar Basin[J]. Progress in Exploration Geophysics, 2008, 31(1):59-64.
[17] 宋智强, 刘斌, 陈吴金, 等. 塔河油田近地表微测井记录中低频段研究[J]. 物探与化探, 2014, 38(1):46-50.
[17] Song Z Q, Liu B, Chen W J, et al. The study of the low-frequency section in the near-surface micro-logging record of the Tahe oilfield[J]. Geophysical and Geochemical Exploration, 2014, 38(1):46-50.
[18] 杨明生. 塔里木巴楚地区复杂地表条件下激发井深设计[J]. 东华理工大学学报:自然科学版, 2014, 37(2):220-224,239.
[18] Yang M S. Design of the shooting hole depth under the complicated complex geology’s shallow layer condition in Tarim basin[J]. Journal of East China Institute of Technology:Natural Science, 2014, 37(2):220-224,239.
[19] 魏明阳. 巴楚地区基于多重条件下约束下激发参数设计[J]. 地球物理学进展, 2014, 29(6):2774-2778.
[19] Wei M Y. How choose the mode of the seismic excitation,under the complicated complex geology’s shallow layer condition in Tarim basin[J]. Progress in Geophysics, 2014, 29(6):2774-2778.
[20] 云美厚, 赵秋芳, 李晓斌. 地震分辨率思考与高分辨率勘探对策[J]. 石油地球物理勘探, 2022, 57(5):1250-1262,1010.
[20] Yun M H, Zhao Q F, Li X B. Thought about seismic resolution and countermeasures of high-resolution seismic exploration[J]. Oil Geophysical Prospecting, 2022, 57(5):1250-1262,1010.
[21] 俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社, 1993.
[21] Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press, 1993.
[1] 张建磊, 王鹏飞, 孙郧松, 李国发. 信号自适应识别多道反褶积方法[J]. 物探与化探, 2024, 48(6): 1702-1708.
[2] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[3] 岳航羽, 张明栋, 张保卫, 王广科, 王小江, 刘东明. 高分辨率单道地震探测技术在内陆浅水区的试验研究[J]. 物探与化探, 2022, 46(4): 914-924.
[4] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[5] 邓儒炳, 阎建国, 陈琪, 宋鑫磊. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3): 702-711.
[6] 马继涛, 廖震, 齐娇, 迟麟. 基于迭代阈值收缩的高分辨率Radon变换方法效果对比[J]. 物探与化探, 2021, 45(2): 413-422.
[7] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[8] 章雄, 张本健, 梁虹, 徐敏, 张洞君, 曾旖. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018, 42(3): 545-554.
[9] 屈进红, 周锡华, 耿圣博, 段乐颖, 邓肖丹. 直升机GT-2A航空重力仪减振系统振动分析[J]. 物探与化探, 2015, 39(S1): 105-112.
[10] 孙瑞莹, 印兴耀, 王保丽, 张广智. 基于Metropolis抽样的弹性阻抗随机反演[J]. 物探与化探, 2015, 39(1): 203-210.
[11] 张振波, 轩义华. 高分辨率抛物线拉冬变换多次波压制技术[J]. 物探与化探, 2014, 38(5): 981-988.
[12] 钟世航, 王荣. 城市闹市区物探技术和岩溶探查的进展及隧道施工时岩爆预报技术的突破[J]. 物探与化探, 2012, 36(3): 511-516.
[13] 李丽青, 陈泓君, 彭学超, 温明明, 李文成. 海洋区域地质调查中的高分辨率单道地震资料关键处理技术[J]. 物探与化探, 2011, 35(1): 86-92.
[14] 瞿辰, 杨文采, 于常青. 高分辨率过井地震层析成像的级联算法及其应用[J]. 物探与化探, 2010, 34(6): 814-820.
[15] 孙明, 林君. 高分辨率轻便可控震源系统实现评价城市地质隐患[J]. 物探与化探, 2009, 33(4): 440-443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com