Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 340-348    DOI: 10.11720/wtyht.2025.1299
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
三维地震资料拼接处理及在渤海油田浅层砂体的应用
罗腾腾(), 段新意, 张金辉, 马振
中海石油(中国)有限公司 天津分公司,天津 300459
3D seismic data splicing and its application to shallow sand bodies in the Bohai oilfield
LUO Teng-Teng(), DUAN Xin-Yi, ZHANG Jin-Hui, MA Zhen
Tianjin Branch of CNOOC(China) Limited,Tianjin 300459, China
全文: PDF(11199 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

常规拼接处理方法以满足构造解释为目的,更多是基于地震数据本身使大套地层反射能量、频率趋于一致为目标,尤其在处理重叠区数据时仅采用其中一个工区的地震资料,无法充分利用各个工区地震资料的有效信息,导致重叠区地震资料保真度低,严重影响后续储层连通性及含油气性的判别。本文提出一种基于加权融合的重叠区数据拼接方法,在重叠区将不同工区的地震数据与相应的权值进行加权融合输出为一道地震数据。实际地震资料应用结果表明,基于重叠区数据融合拼接的处理结果能够有效改善地震资料品质,剖面上同相轴连续性变好,更有利于浅层砂体连通性的判别。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗腾腾
段新意
张金辉
马振
关键词 地震资料拼接重叠区反距离加权浅层砂体连通性    
Abstract

Conventional splicing methods aim to serve structural interpretation and align the reflection energy and frequency of large strata based on seismic data themselves.They adopt seismic data only from one study area in processing data of overlap zones,failing to fully utilize the effective information in seismic data of all study areas.Consequently,the resulting low-fidelity seismic data in overlap zones severely affect subsequent discrimination of reservoir connectivity and hydrocarbon-bearing properties.This study proposed a weighted fusion-based data spicing method for overlap zones,where seismic data from different study areas are fused with corresponding weights to generate a trace of seismic data.The application of the proposed method to actual seismic data shows that the processing results based on the fusion and splicing of data in overlap zones can effectively improve the quality of seismic data,with high continuity of seismic events on the profile, contributing significantly to the discrimination of the connectivity of shallow sand bodies.

Key wordsseismic data splicing    overlap zone    inverse distance weighting    shallow sand body    connectivity
收稿日期: 2024-12-09      修回日期: 2025-02-13      出版日期: 2025-04-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“渤海海域中生界火山岩有利相带地震响应机理及高精度成像方法研究”(U24B2022)
作者简介: 罗腾腾(1995-),女,物探工程师,主要从事地震资料处理与评估工作。Email:luott3@cnooc.com.cn
引用本文:   
罗腾腾, 段新意, 张金辉, 马振. 三维地震资料拼接处理及在渤海油田浅层砂体的应用[J]. 物探与化探, 2025, 49(2): 340-348.
LUO Teng-Teng, DUAN Xin-Yi, ZHANG Jin-Hui, MA Zhen. 3D seismic data splicing and its application to shallow sand bodies in the Bohai oilfield. Geophysical and Geochemical Exploration, 2025, 49(2): 340-348.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1299      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/340
Fig.1  拼接工区示意
区块名 A B
采集方式 拖缆 Swath
震源容量/(cu·in) 2250 5090
电缆长度/m 3600 16500
覆盖次数/次 36 1200
Table 1  拼接工区资料主要采集参数对照
Fig.2  3种不同重叠区的选取方案示意
Fig.3  振幅匹配前(a)、后(b)的拼接剖面对比
Fig.4  匹配滤波前(a)、后(b)的拼接剖面对比
Fig.5  拼接工区地震资料频率特征
Fig.6  本文方法对融合区地震资料拼接前(a)、后(b)的剖面对比
Fig. 7  3种拼接方案叠加剖面对比
a—仅应用A区块资料; b—仅应用B区块资料;c—应用两区块融合资料
Fig.8  3种拼接方案的频谱对比
Fig.9  3种拼接方案的信噪比对比
Fig.10  渤海某砂体最小振幅值属性
a—仅应用A区块资料; b—仅应用B区块资料;c—应用两区块融合资料
Fig.11  3套资料连井剖面对比
a—仅应用A区块资料; b—仅应用B区块资料;c—应用两区块融合资料
[1] 王西文, 刘全新, 高静怀, 等. 地震资料在小波域的分频处理与重构[J]. 石油地球物理勘探, 2001, 36(1):78-85.
[1] Wang X W, Liu Q X, Gao J H, et al. Frequency shared processing and reconstitution of seismic data in wavelet domain[J]. Oil Geophysical Processing, 2001, 36(1):78-85.
[2] 王西文, 高静怀, 李幼铭. 高分辨地震资料处理中导数小波函数的构造[J]. 石油物探, 2000, 39(2):64-71.
[2] Wang X W, Gao J H, Li Y M. Construction of derivative wavelet function in high resolution seismic data processing[J]. Geophysical Prospecting for Petroleum, 2000, 39(2):64-71.
[3] 程金星, 朱立华, 杨长春, 等. 基于小波变换的三维地震资料拼接方法[J]. 石油地球物理勘探, 2004, 39(4):406-408.
[3] Cheng J X, Zhu L H, Yang C C, et al. Putting 3D seismic data together based on wavelet transform[J]. Oil Geophysical Processing, 2004, 39(4):406-408.
[4] 冯心远, 王宇超, 胡自多, 等. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3):93-96.
[4] Feng X Y, Wang Y C, Hu Z D, et al. Prestack seismic data splicing techniques based on shaping operator derived from poststack record[J]. Lithologic Reservoirs, 2007, 19(3):93-96.
[5] 吴琼, 杨长春, 张文忠, 等. 过渡带拼接地震资料处理方法研究[J]. 地球物理学进展, 2008, 23(3):761-767.
[5] Wu Q, Yang C C, Zhang W Z, et al. Research on processing technology for matching seismic data acquired in seashore and marine prospect[J]. Progress In Grophysics, 2008, 23(3):761-767.
[6] 仲伯军, 印兴耀. 复杂地区三维地震资料拼接中的一致性处理技术[J]. 石油物探, 2008, 47(4):393-397.
[6] Zhong B J, Yin X Y. Consistent processing technology for splicing 3D seismic data in complex area[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):393-397.
[7] 周秘, 付晓敏, 谢涛. 海上复杂区块三维叠前精细拼接技术研究与应用[J]. 中国石油和化工标准与质量, 2021, 41(17):165-166.
[7] Zhou M, Fu X M, Xie T. Research and application of three-dimensional pre-stack fine splicing technology for complex offshore blocks[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(17):165-166.
[8] 刘康. 五维匹配追踪付里叶插值技术在复杂地表三维地震资料拼接数据规则化处理中的应用[C]// 中国石油学会2021年物探技术研讨会论文集, 2021:632-635.
[8] Liu K. Application of five-dimensional matching tracking Fourier interpolation technology in regularization processing of complex surface 3D seismic data splicing data[C]// Proceedings of the 2021 Geophysical Technology Symposium of China Petroleum Society, 2021:632-635.
[9] 毕彩芹, 林中凯, 胡志方, 等. 复杂地表条件下二维地震资料连片处理技术——以敦煌盆地地震资料处理为例[J]. 断块油气田, 2017, 24(3):346-350.
[9] Bi C Q, Lin Z K, Hu Z F, et al. Techniques on splicing 2D seismic data processing in complex surface area:Taking Dunhuang Basin in western China as an example[J]. Fault Block & Gas Field, 2017, 24(3):346-350.
[10] 王晓燕, 马建波, 姜忠良, 等. 桥口南—徐集地区三维地震资料连片处理技术[J]. 断块油气田, 2003, 10(3):19-21.
[10] Wang X Y, Ma J B, Jiang Z L, et al. Technology of 3D seismic data joint processing in south Qiaokou-Xuji area[J]. Fault Block & Gas Field, 2003, 10(3):19-21.
[11] 云美厚, 丁伟, 王开燕, 等. 地震资料一致性处理方法研究与初步应用[J]. 石油物探, 2006, 45(1):65-69.
[11] Yun M H, Ding W, Wang K Y, et al. Study and primary application on consistency processing of seismic data[J]. Geophysical Prospecting for Petroleum, 2006, 45(1):65-69.
[12] 周海民, 张玮, 谢占安, 等. 断陷盆地大面积三维叠前时间偏移连片处理的地质意义及关键技术[J]. 石油地球物理勘探, 2005, 40(6):693-699.
[12] Zhou H M, Zhang W, Xie Z A, et al. Geologic meaning and key techniques of 3D large area multiple-block-jointed prestack time migration processing in fault basin[J]. Oil Geophysical Processing, 2005, 40(6):693-699.
[13] 张颖, 乐金, 阎世信, 等. 三维地震资料连片处理技术及应用效果[J]. 石油勘探与开发, 2002, 29(6):58-60.
[13] Zhang Y, Yue J, Yan S X, et al. Multi-survey joint processing of 3D seismic data: techniques and applications[J]. Petroleum Exploration And Development, 2002, 29(6):58-60.
[14] 张瑶. 三维地震资料连片处理技术与运用研究[J]. 中国石油和化工标准与质量, 2021, 41(21):161-162.
[14] Zhang Y. Research on processing technology and application of three-dimensional seismic data[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(21):161-162.
[15] 陈可洋, 吴清岭, 李来林, 等. 松辽盆地三维地震资料连片处理关键技术及其应用效果分析[J]. 岩性油气藏, 2012, 24(2):87-91.
[15] Chen K Y, Wu Q L, Li L L, et al. Key technologies of 3D seismic data muti-survey joint processing and its application effect analysis in Songliao Basin[J]. Lithologic Reservoirs, 2012, 24(2):87-91.
[16] 王兆旗, 庄锡进, 陈见伟, 等. 地震资料叠前深度偏移连片处理关键技术[J]. 地球物理学进展, 2014, 29(1):318-323.
[16] Wang Z Q, Zhuang X J, Chen J W, et al. Key technologies of seismic data pre-stack depth migration multi-survey joint processing[J]. Progress in Grophysics, 2014, 29(1):318-323.
[17] 王西文, 周立宏. 三维地震资料拼接中的地震子波处理[J]. 石油物探, 2002, 41(4):448-451.
[17] Wang X W, Zhou L H. Wavelet transform used in the concatenation of 3D seismic data sets[J]. Geophysical Prospecting for Petroleum, 2002, 41(4):448-451.
[18] 刘成斋. 胜利油田三维地震数据连片处理[J]. 石油地球物理勘探, 2004, 39(5):579-585.
[18] Liu C Z. Data processing joining several 3D seismic surveying blocks together in Shengli Oilfield[J]. Oil Geophysical Processing, 2004, 39(5):579-585.
[19] 段云卿. 匹配滤波与子波整形[J]. 石油地球物理勘探, 2006, 41(2):156-159.
[19] Duan Y Q. Matched filtering and wavelet shaping[J]. Oil Geophysical Processing, 2006, 41(2):156-159.
[20] 左海, 魏庚雨, 何小松. 三维地震资料叠前连片处理技术[J]. 石油地球物理勘探, 2008, 43(S1):29-35.
[20] Zuo H, Wei G Y, He X S. Block jointed processing technique of 3D prestack seiemic data[J]. Oil Geophysical Processing, 2008, 43(S1):29-35.
[21] 徐强, 刘丽华, 陈明良, 等. 解决二、三维地震资料一致性问题的匹配滤波处理技术——以川东WBC构造为例[J]. 天然气工业, 2010, 30(8):21-24.
[21] Xu Q, Liu L H, Chen M L, et al. Matched filtering technology for the coincidence between 2D and 3D seismic data processing:A case study of the WBC structure in East Sichuan Bsain[J]. Nature Gas Industry, 2010, 30(8):21-24.
[22] 陈斌. 子波整形方法在大庆徐家围子深层气藏连片处理中的应用[J]. 物探化探计算技术, 2011, 33(3):258-263.
[22] Chen B. Waveform consistency shaping method and application in seismic merging processing in Daqing xujiaweizi deep gas reservoir[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011, 33(3):258-263.
[23] 杨帆, 韩立国, 封强. 基于反距离加权法的混采地震数据分离方法[J]. 世界地质, 2019, 38(2):478-485.
[23] Yang F, Han L G, Feng Q. Separation of blended source seismic data based on IDW method[J]. Global Geology, 2019, 38(2):478-485.
[1] 唐杰, 李聪, 温雷, 戚瑞轩. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4): 859-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com