Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (1): 203-210    DOI: 10.11720/wtyht.2015.1.33
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
基于Metropolis抽样的弹性阻抗随机反演
孙瑞莹, 印兴耀, 王保丽, 张广智
中国石油大学(华东) 地球科学与技术学院, 山东 青岛 266580
Stochastic inversion of elastic impedance based on Metropolis sampling algorithm
SUN Rui-Ying, YIN Xing-Yao, WANG Bao-Li, ZHANG Guang-Zhi
School of Geosciences, China University of Petroleum(Huadong), Qingdao 266580, China
全文: PDF(1981 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 笔者提出了基于Metropolis抽样的弹性阻抗随机反演方法,该方法是一种基于蒙特卡洛的非线性反演方法,能够有效地融合测井资料中的高频信息,提高反演结果的分辨率.应用贝叶斯理论框架,首先通过快速傅里叶滑动平均模拟算法(fast Fourier transform-moving average,FFT-MA)和逐渐变形算法(gradual deformation method,GDM)得到基于地质统计学的先验信息,然后用Metropolis抽样算法对后验概率密度进行抽样,得到反演问题的解.其中FFT-MA模拟作为一种高效的频率域模拟方法,结合GDM后,在保持模拟空间结构不变的前提下,可以连续修改储层模型,直至满足实际观测地震记录.数值试验表明:FFT-MA模拟有效地提高了计算效率,融入GDM更新算法,可以保证反演结果有效地收敛,并且反演结果与理论模型吻合较好,具有较高的分辨率,该方法采用两步法反演弹性参数,运算速度较快.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Stochastic inversion of elastic impedance based on Metropolis sampling algorithm is a Monte Carlo based strategy for non-linear inversion,which can effectively integrate the high-frequency information of well-logging data and have a higher resolution.This method is formulated in the Bayesian framework.Firstly,the priori information can be obtained through Fast Fourier Transform-Moving Average (FFT-MA) and Gradual Deformation Method (GDM).Then Metropolis algorithm is employed so as to obtain an exhaustive characterization of the posteriori probability density.FFT-MA is a kind of efficient simulation method.Combined with GDM,it can constantly modify the reservoir model and keep the spatial structure unchanged until it matches the observed seismic data.According to the numerical calculations,it can be concluded that FFT-MA simulation can reduce the time consumption.Combined with GDM updating algorithm,the inversion results can converge rapidly,and the final results match the model well and have a higher resolution.In addition,this method adopts two-step method to invert elastic parameters,so it improves the computational efficiency to some extent.
收稿日期: 2014-05-08      出版日期: 2015-02-10
:  P631.4  
基金资助:国家重点基础研究发展计划(973计划)(2013CB228604);国家科技重大专项项目(2011ZX05030-004-002);国家自然科学基金项目(41204085);中国石化地球物理重点实验室项目(WTYJY-WX2013-04-07)
作者简介: 孙瑞莹(1988-), 女, 硕士研究生, 主要从事地球物理领域随机地震反演方法的研究.
引用本文:   
孙瑞莹, 印兴耀, 王保丽, 张广智. 基于Metropolis抽样的弹性阻抗随机反演[J]. 物探与化探, 2015, 39(1): 203-210.
SUN Rui-Ying, YIN Xing-Yao, WANG Bao-Li, ZHANG Guang-Zhi. Stochastic inversion of elastic impedance based on Metropolis sampling algorithm. Geophysical and Geochemical Exploration, 2015, 39(1): 203-210.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.1.33      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I1/203
[1] Chopra S,Castagna J,Portniaguine O.Seismic resolution and thin-bed reflectivity inversion[J].CSEG recorder,2006,31(1):19-25.
[2] Sancevero S S,Remacre A Z,de Souza Portugal R,et al.Comparing deterministic and stochastic seismic inversion for thin-bed reservoir characterization in a turbidite synthetic reference model of Campos Basin,Brazil[J].The Leading Edge,2005,24(11):1168-1172.
[3] Moyen R,Doyen P M.Reservoir connectivity uncertainty from stochastic seismic inversion//2009 SEG Annual Meeting Society of Exploration Geophysicists,2009.
[4] Sams M S,Saussus D.Comparison of uncertainty estimates from deterministic and geostatistical inversion//70th EAGE Conference & Exhibition,2008.
[5] Francis A M.Understanding stochastic inversion:part 1[J].First Break,2006,24(11):69-77.
[6] Francis A M.Understanding stochastic inversion:part 2[J].First Break,2006,24(12):79-84.
[7] Dubrule O.Workshop report:'Uncertainty in reserve estimates' EAGE Conference, Amsterdam[J].Petroleum Geoscience,1996, 2(4): 351-352.
[8] Connolly P.Elastic impedance[J].The Leading Edge,1999,18(4):438-452.
[9] Whitcombe D N.Elastic impedance normalization[J].Geophysics,2002,67(1):60-62.
[10] Whitcombe D N.Extended elastic impedance for fluid and lithology prediction[J].Geophysics,2002,67(1):63-67.
[11] 甘利灯,赵邦六,杜文辉,等.弹性阻抗在流体与岩性预测中的潜力分析[J].石油物探,2005,44(5):504-508.
[12] 王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展,2005,20(1):89-92.
[13] 潘仁芳,宋鹏.叠前弹性反演在苏里格气田的应用[J].物探与化探,2010,34(2):237-241.
[14] 张广智,郑静静,印兴耀,等.基于Curvelet变换的角度流体因子提取技术[J].物探与化探,2011,35(4):505-510.
[15] Kjønsberg H,Hauge R, Kolbjrnsen O,et al.Bayesian Monte Carlo method for seismic predrill prospect assessment[J].Geophysics,2010,75(2):O9-O19.
[16] Le Ravalec M,Noetinger B,Hu L Y.The FFT moving average (FFT-MA) generator:An efficient numerical method for generating and conditioning Gaussian simulations[J].Mathematical Geology,2000,32(6):701-723.
[17] Hu L Y.Gradual deformation and iterative calibration of Gaussian-related stochastic models[J].Mathematical Geology,2000,32(1):87-108.
[18] 桂金咏,印兴耀,曹丹平.基于弹性阻抗反演理论的泊松比反演方法研究[J].石油物探,2011,50(5):463-469.
[19] Scales J A,Smith M L,Treitel S.Introductory geophysical inverse theory[M].Samizdat Press,2001.
[20] Oliver D S.Moving averages for Gaussian simulation in two and three dimensions[J].Mathematical Geology,1995,27(8):939-960.
[21] Journel A G,Huijbregts C J.Mining geostatistics[M].Academic press,1978.
[22] Hu L Y,Blanc G.Constraining a reservoir facies model to dynamic data using a gradual deformation method//6th European Conference on the Mathematics of Oil Recovery,1998.
[23] Hu L Y,Le Ravalec M,Blanc G,et al.Reducing uncertainties in production forecasts by constraining geological modeling to dynamic data//SPE Annual Technical Conference and Exhibition,Society of Petroleum Engineers,1999.
[24] Mosegaard K,Tarantola A.Monte Carlo sampling of solutions to inverse problems[J].Journal of Geophysical Research:Solid Earth (1978–2012),1995,100(B7):12431-12447.
[25] Gelman A,Roberts G,Gilks W.Efficient metropolis jumping hules[J].Bayesian statistics,1996,5:599-608.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com