Please wait a minute...
E-mail Alert Rss
 
物探与化探  2018, Vol. 42 Issue (1): 75-86    DOI: 10.11720/wtyht.2018.1.09
  本期目录 | 过刊浏览 | 高级检索 |
第85届SEG年会多分量地震亮点评述
孙丽霞1(), 张智1, 钱忠平2, 王赟3()
1.桂林理工大学 地球科学学院,广西 桂林 541000
2.中国石油集团东方地球物理勘探有限责任公司物探技术研究中心,河北 涿州 072751
3.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
A commentary on multi-component seismic technology in the 85th SEG annual meeting
Li-Xia SUN1(), Zhi ZHANG1, Zhong-Ping QIAN2, Yun WANG3()
1.School of Earth Science,Guilin University of Technology,Guilin 541000,China
2.Bureau of Geophysical Prospecting INC,China National Petroleum Corporation,Zhuozhou 072751,China
3.School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China
全文: PDF(9196 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

从第85届美国SEG年会的会议论文中,遴选了34篇具有一定代表性的、涉及地震各向异性理论和多分量地震技术,主要包括基础实验理论、应用效果,或在多分量地震数据的处理和多波的解释反演方法技术方面体现了一定先进性的文章进行逐一剖析,并对各向异性岩石物理实验和基础理论模型、多分量地震数据处理的关键技术、海洋多分量地震、矢量场技术给予重点介绍。伴随世界油气价格的持续低迷,尽管逆时偏移和全波形反演沿袭前几年的热度仍在本届年会学术报告中占据了一定的比例,但毫无疑问,本届年会的特点主要是转换波处理的难点攻关、海洋多分量地震的双检压噪和应用,所呈现的潜在发展态势是:随着地震观测技术的发展,微震与时移地震的联合应用、地震与电磁的联合观测、6分量矢量场的观测和利用可能会成为以后领域发展的主流。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丽霞
张智
钱忠平
王赟
关键词 SEG多分量各向异性矢量场    
Abstract

About 34 papers are chosen and analyzed from the 85th SEG technical presentations,of which,some are about rock physics and basic theories of anisotropy,some present plausible applications and case studies,some about key techniques on processing,interpretation and inversion of multi-component and multi-wave.Special emphasizes are given to the papers that might proceed the knowledge of anisotropy and principle models,or make progress on key technique of multi-component seismic data processing,besides ocean 4-C seismic and vector techniques.Effected by the lower price of oil worldwide through years,it is obviously that the most advances are about PS-statics correction,dual sensors denoising and 4C application in marine field, though papers about reverse time migration and full wave inversion still occupy a certain ratio,just because they had been the main roles in the past years.It would be predicted that,promoted by sensing techniques and seismic applications,joint application of micro- and time-lapse seismic prospecting based on multi-component,acquirement of seismic and electromagnetic data at the same position,and 6-component seismic measurement and utilization will be the spot lights in the future.

Key wordsSEG    multi-component    anisotropy    vector
收稿日期: 2017-01-11      出版日期: 2018-02-20
:  P631.4  
基金资助:国家自然科学基金项目(41425017、41574126、41604119、41504107),中国石油天然气集团公司项目“弹性波地震成像技术合作研发” ,国家十三五重大专项“薄层地震波场特征与反演研究”(2016ZX05002005-003-002),中国石油化工股份有限公司项目“塔河10区缝洞体全方位三维预测及连通性研究”,中国石油天然气集团公司项目“弹性波地震成像技术合作研发”
作者简介:

作者简介: 孙丽霞(1993-),女,桂林理工大学地球科学学院在读硕士研究生。Email:2561110746@qq.com

引用本文:   
孙丽霞, 张智, 钱忠平, 王赟. 第85届SEG年会多分量地震亮点评述[J]. 物探与化探, 2018, 42(1): 75-86.
Li-Xia SUN, Zhi ZHANG, Zhong-Ping QIAN, Yun WANG. A commentary on multi-component seismic technology in the 85th SEG annual meeting. Geophysical and Geochemical Exploration, 2018, 42(1): 75-86.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2018.1.09      或      https://www.wutanyuhuatan.com/CN/Y2018/V42/I1/75
  Eagle Ford模型

Austin 膏岩层假定为各向同性,Eagle Ford层由无机质、有机质干酪根(图中横向水平灰线条)和垂直裂缝(垂向红色线段)组成

  ACP叠加剖面经过静校正后同相轴的连续性和分辨率显著提高

a—静校正前;b—静校正后

  Hussar 地区单炮实验数据

未校正的径向分量(a)如框中所示,射线参数域一致性校正(b),成功拉平同相轴

  各向异性AVAZ梯度剖面

a—各向同性AVA梯度剖面;b—各向异性AVAZ梯度剖面;c—各向异性梯度剖面

  沿Eagle Ford地层的AVAZ各向异性强度属性

a—未进行可靠性估;b—已评估其可靠性结果

  页岩层的速度各向异性强度平面

a—全数据体VVAZ分析后沿层提取的属性;b—沿层提取地震数据后VVAZ分析结果

  Moere潜水器调查中某节点记录的共检波点地震信号[23]

a、c、e—分别是振动速度在zxy三方向的投影;b、d、f—分别是旋转场在zxy三方向的投影

  SERPENT项目实施地点示意

红色星号表示震中位置,蓝色线为EM测线,黄色圆点是三分量地震与EM的联测点。此图同时显示了发生在近尼加拉瓜海岸附近的一次M5.4级地震的地震烈度

  SERPENT调查期间发生的地震前14 s记录(通过旋转使切向分量最小化,已对三分量地震记录进行了处理)

a—记录的平动3分量振动速度;b—磁场在2个水平磁棒上产生的投影;c—通过2分量磁场水平分量换算得到的旋转分量

  在整个Montney层的开发阶段,不同时间采集的转换横波计算的横波分裂时差显示高各向异性对应于高的产量[30]
  两水平井02-07和07-07在不同时间不同压裂段的产量增幅

不同颜色的点表示预测的不同时间的压裂微震事件,深蓝色的点代表第1个阶段,红色为第2个阶段,浅蓝色代表第3个阶段,橘黄色代表第4个阶段,绿色代表第5个阶段;储层上方100 m处上覆地层的时移数据和微地震预测的裂缝的叠合,储层上部正的异常是由储层内部的压力造成的[31]

[1] Silva J A,Sayers C M.AVAZ interpretation using anisotropic rock physics[C]//SEG Technical Program Expanded Abstracts,2015:310-315.
[2] Bachrach R,Sayers C M,Dasgupta S,et al.Recent advances in the characterization of unconventional reservoirs with wide-azimuth seismic data[C]//Unconventional Resources Technology Conference,2013:263-272.
[3] Willis J R. Bounds and self-consistent estimates for the overall properties of anisotropic composites[J].Journal of the Mechanics and Physics of Solids,1977,25(3):185-202.
[4] Willis J R.Variational and related methods for the overall properties of composites[J].Advances in Applied Mechanics,1981,21:1-78.
[5] Schoenberg M. Elastic wave behavior across linear slip interfaces[J].The Journal of the Acoustical Society of America,1980,68(5):1516-1521.
[6] Yan F,Han D,Yao Q.Physical constraints on c13 and Thomsen parameter delta for VTI rocks[C]//SEG Technical Program Expanded Abstracts,2013:2889-2894.
[7] Chichinina T,Obolentseva I,Dugarov G.Effective-Medium Anisotropic models of Fractured Rocks of TI Symmetry:Analysis of Constraints and Limitations in Linear Slip model[C]//SEG Technical Program Expanded Abstracts,2015:421-426.
[8] Xie J,Di B,Wei J,et al.Enhancement of inversion accuracy of Thomsen parameter delta on shale: based on experimental and theoretical improvement[C]//SEG Technical Program Expanded Abstracts,2015:432-436.
[9] Xie J,Di B,Wei J,et al. Feasibility of theoretical formulas on the anisotropy of shale based on laboratory measurement and error analysis[J].Journal of Geophysics and Engineering,2015,12(2):253-261.
[10] Berryman J G.Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies[J].Geophysics,2008,73(1):D1-D10.
[11] Blum T E,Adam L,Wijk K.Noncontacting benchtop measurements of the elastic properties of shales[J].Geophysics,2013,78(3):C25-C31.
[12] Wang W,McMechan G A.Vector Domain P and S Decomposition in Viscoelastic Media[C]//SEG Technical Program Expanded Abstracts,2015:2153-2158.
[13] Shukla K,Jaiswal P.Amplitude preservation in multicomponent processing using local similarity[C]//SEG Technical Program Expanded Abstracts,2015:2170-2174.
[14] Cova R,Henley D,Innanen K.Addressing shear wave static correction in the ray parameter domain:a non-stationary interferometric approach[C]//SEG Technical Program Expanded Abstracts,2015:2129-2133.
[15] Pan W,Innanen K A,Margrave G F,et al.Estimation of elastic constants in HTI media using Gauss-Newton and Full-Newton multi-parameter full waveform inversion[C]//SEG Technical Program Expanded Abstracts,2015:1177-1182.
[16] Cheng X,Jiao K,Sun D,et al.A new approach of visco-acoustic waveform inversion in the time domain[C]//SEG Technical Program Expanded Abstracts,2015:1183-1187.
[17] Podgornova O,Leaney S,Liang L.Analysis of resolution limits of VTI anisotropy with full waveform inversion[C]//SEG Technical Program Expanded Abstracts,2015:1188-1192.
[18] Debens H A,Warner M,Umpleby A,et al.Global anisotropic 3D FWI[C]//SEG Technical Program Expanded Abstracts,2015:1193-1197.
[19] Anat C,Alex M.Obstacles in the analysis of azimuth information from prestack seismic data[C]//SEG Technical Program Expanded Abstracts,2015:427-431.
[20] 胡晓亚,王赟.多分量地震技术新进展——SEG2013年会多分量地震技术论文分析与评述[J].地球物理学进展,2015,30(1):391-400.
[21] 孙丽霞,杨春,王赟,等.第84届SEG年会多分量地震技术评述[J]. 煤田地质与勘探, 2016,44(2):96-105.
[22] Cochard A,Igel H,Schuberth B,et al.Rotational motions in seismology: Theory, observations, simulation[M].Earthquake source asymmetry,structural media and rotation effects:Springer Berlin,2006:391-411.
[23] Barak O,Key K,Constable S,et al.Acquiring rotation data on the ocean bottom without rotation sensors[C]//SEG Technical Program Expanded Abstracts,2015:2148-2152.
[24] Zhang Z,Sun Y,Berteussen K,et al.4C OBC shear wave processing in shallow water environment of the Arabian Gulf[C]//SEG Technical Program Expanded Abstracts,2015:2113-2117.
[25] Yao C,Chen X,Lei J.Seismic synthetics study of 4 components for sea floor reflection[C]//SEG Technical Program Expanded Abstracts,1999:804-807.
[26] Liang H,Keho T H.Deghosting 4D buried land sensor data using multi-component wavefield separation[C]//SEG Technical Program Expanded Abstracts,2015:2143-2147.
[27] Zhang B,Zhou H,Ding Z,et al.Integrated processing techniques to low signal-to-noise ratio OBC dual-sensor seismic data[C]//SEG Technical Program Expanded Abstracts,2015:2180-2184.
[28] D'Amico D,Energy T,Davis T.Monitoring hydraulic fracturing through the use of time-lapse, multicomponent seismic data, Pouce Coupe field, Alberta[C]//SEG Technical Program Expanded Abstracts,2015:2077-2081.
[29] Atkinson J,Davis T.Multicomponent time-lapse monitoring of two hydraulic fracture stimulations in the Pouce Coupe field unconventional reservoir[J].First Break,2011,29(10):91-97.
[30] Steinhoff C.Multicomponent seismic monitoring of the effective stimulated volume associated with hydraulic fracture stimulations in a shale reservoir,Pouce Coupe field,Alberta,Canada[J].Dissertations and Theses — Gradworks,2013,51(5):102.
[31] Vinal I.Multi-component seismic monitoring of stress arching in the overburden due to hydraulic fracturing in the Montney Shale at Pouce Coupe field,Alberta,Canada[J].Dissertations and Theses — Gradworks,2015,54(4):138.
[32] Bullock A,Bekhtin Y,Oritin M,et al.Improved imaging with PP-PS simultaneous joint tomography over the Grane field[C]//SEG Technical Program Expanded Abstracts,2015:2094-2097.
[33] Vinje V,Zhao P,Gaiser J.Offset vector tile gather extension and weighting to reduce footprint in dual-datum and converted-wave migration[C]//SEG Technical Program Expanded Abstracts,2015:2103-2107.
[34] Gupta M,DeAngelo M V,Hardage B.P-P and S-S wave interpretation of a carbonate formation:A case study from the Arbuckle interval in Wellington field,Kansas[C]//SEG Technical Program Expanded Abstracts,2015:2082-2087.
[35] Gaiser J.Converted-wave contributions to anisotropic shale behavior[C]//SEG Technical Program Expanded Abstracts,2015:2088-2093.
[1] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[2] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[3] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[4] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[5] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[6] 张红文, 刘喜恒, 周兴海, 李六五, 杜喜善, 王成泉. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1): 25-33.
[7] 唐杰, 李聪, 温雷, 戚瑞轩. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4): 859-865.
[8] 李文成, 扶喆一. 焦石坝地区页岩各向异性及其影响的分析研究[J]. 物探与化探, 2019, 43(2): 266-272.
[9] 冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4): 766-776.
[10] 闫国翔, 尹秉喜, 杨勇. 电性源瞬变电磁全区视电阻率定义[J]. 物探与化探, 2017, 41(5): 933-938.
[11] 陆大进, 薛国强, 杜东旭, 马振军. 安微省典型矿集区岩石各向异性电性参数测试分析[J]. 物探与化探, 2017, 41(2): 333-340.
[12] 喻思羽, 李少华, 段太忠, 王鸣川. 基于局部各向异性的非平稳多点地质统计学算法[J]. 物探与化探, 2017, 41(2): 262-269.
[13] 赵宇, 张玉贵, 周俊义. 单轴加载条件下煤岩超声各向异性特征实验[J]. 物探与化探, 2017, 41(2): 306-310.
[14] 唐杰, 王浩, 李健, 苏文涵, 姚振岸. 含流体浊积岩速度与衰减各向异性特征研究——以北海浊积岩为例[J]. 物探与化探, 2017, 41(1): 153-157.
[15] 杨国权, 李河昭, 徐文才, 王红振, 刘泽民. TI介质一种稳定的标量波方程及其逆时偏移[J]. 物探与化探, 2016, 40(6): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com