Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 296-313    DOI: 10.11720/wtyht.2024.1177
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
中国典型金矿集区硫同位素组成及相关问题思考
兰瑞烜1,2(), 赵红坤1,2, 唐世新1, 段壮1, 马生明1()
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.中国地质大学(北京),北京 100083
Sulfur isotopic composition and related issues of typical gold ore districts in China
LAN Rui-Xuan1,2(), ZHAO Hong-Kun1,2, TANG Shi-Xin1, DUAN Zhuang1, MA Sheng-Ming1()
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(5941 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在过去十年找矿突破战略行动上,金矿勘查在我国取得了重大的进展,展现出了巨大的金找矿潜力。矿化剂元素硫与金矿的形成密切相关,已有国内外学者证明硫是矿床形成过程中最重要的元素。硫同位素被广泛用于示踪金矿中的矿质来源,不同的金矿具有不同的地质背景,硫同位素的组成特征受不同硫源控制,金矿中的硫同位素可以反映成矿的地质背景。矿集区尺度的硫同位素在时间—空间分布特征上具有理论意义,在指导找矿勘查方面也具有重要作用。我国的金矿资源可以划分为42个金矿集区,其中胶东、小秦岭、滇黔桂3个金矿集区最为典型,梳理和总结3个典型金矿集区硫同位素特征的异同,可为今后的金矿找矿勘查提供理论和方法支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰瑞烜
赵红坤
唐世新
段壮
马生明
关键词 硫同位素金矿集区    
Abstract

In the Prospecting Breakthrough Strategy (2011~2020), China has made significant progress in the exploration of gold deposits, demonstrating considerable prospecting potential. Element sulfur, a mineralizer, is closely associated with the formation of gold deposits, proved to be the most significant element in gold deposit formation by scholars at home and abroad. Sulfur isotopes have been extensively used to trace the sources of minerals in gold deposits. Different gold deposits reside in distinct geological settings. Since sulfur isotopic compositions are governed by various sulfur sources, sulfur isotopes in gold deposits can reflect the geological settings of mineralization. The ore-district-scale spatio-temporal distribution of sulfur isotopes has theoretical implications, playing a significant role in guiding ore prospecting. The gold resources in China are distributed in 42 gold ore districts, typified by Jiaodong, Xiaoqinling, and Yunnan-Guizhou-Guangxi. This study comparatively analyzed and summarized the characteristics of sulfur isotopes in the three typical gold ore districts, providing theoretical and methodological support for future gold prospecting.

Key wordssulfur    sulfur isotope    gold ore district
收稿日期: 2023-04-18      修回日期: 2023-09-12      出版日期: 2024-04-20
ZTFLH:  P632  
基金资助:科技基础资源调查专项资金(2022FY101800);中央级公益性科研院所基本科研业务费专项资金(AS2022J11);国家重点研发计划项目(2018YFE0208300)
通讯作者: 马生明
作者简介: 兰瑞烜(1995-),男,在读博士研究生,勘查地球化学研究方向。Email:lanruixuan@email.cugb.edu.cn
引用本文:   
兰瑞烜, 赵红坤, 唐世新, 段壮, 马生明. 中国典型金矿集区硫同位素组成及相关问题思考[J]. 物探与化探, 2024, 48(2): 296-313.
LAN Rui-Xuan, ZHAO Hong-Kun, TANG Shi-Xin, DUAN Zhuang, MA Sheng-Ming. Sulfur isotopic composition and related issues of typical gold ore districts in China. Geophysical and Geochemical Exploration, 2024, 48(2): 296-313.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1177      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/296
Fig.1  胶东金矿集区区域地质及金矿床分布(据文献[62]修改)
1—第四系;2—新近系;3—白垩系;4—古元古界和新元古界;5—新元古代花岗质片麻岩;6—太古宙花岗岩-绿岩带;7—崂山花岗岩;8—伟德山花岗岩;9—郭家岭花岗岩;10—侏罗纪花岗岩类;11—三叠纪花岗岩类;12—断层;13—以往探明的浅部金矿床;14—新探明的深部金矿床
Fig.2  小秦岭金矿集区区域地质及金矿床分布(据文献[68]修改)
Fig.3  滇黔桂金矿集区区域地质及金矿床分布(据文献[72]修改)
1—印支地块;2—华南地块;3—碳酸盐岩台地;4—浊积岩;5—晚古生代至三叠纪碳酸盐岩台地夹玄武岩;6—大断裂;7—区域断裂;8—晚白垩世超基性-基性岩脉;9—晚白垩世石英斑岩脉;10—晚白垩世花岗岩;11—二叠纪超基性-基性岩;12—金矿
Fig.4  胶东金矿集区赋矿地质体及部分金矿床硫同位素分布特征(数据引自文献[82????????-91])
Fig.5  小秦岭金矿集区赋矿地质体及代表性金矿硫同位素分布特征(数据引自文献[92????????????-105])
Fig.6  滇黔桂金矿集区赋矿地质体及代表性金矿硫同位素分布特征(数据引自文献[106?????????-116])
样品号 岩性 测试矿物 采样位置
Na2O带出
量/10-3
δ34S/‰
ZK901-1-1 粉砂岩 黄铁矿 > 10 -1.5
ZK902-2-1 粉砂岩 黄铁矿 > 10 -6.6
ZK902-4-1 花岗闪长斑岩 黄铁矿 > 20 3.0
ZK902-5-1 花岗闪长斑岩 黄铁矿 < 6 3.1
ZK902-6-1 花岗闪长斑岩 黄铁矿 < 6 3.2
SC02-4 花岗岩 黄铁矿 12.6
GC01-2 花岗岩 黄铁矿 12.7
Table 1  马头矿区的硫同位素组成[11]
Fig.7  马头矿区9号勘探线剖面Na2O带出量异常(据文献[11]修改)
1—第四系;2—中志留统坟头组粉砂岩;3—花岗闪长斑岩;4—地层界线;5—蚀变带界线;6—Mo矿体(333);7—Mo矿体(332);8—Cu矿体;9—钻孔及钻孔标高;10—Na2O带出量大于20×10-3;11—Na2O带出量大于10×10-3;12—Na2O带出量小于6×10-3;13—硫同位素采样点
[1] 王成辉, 王登红, 黄凡, 等. 中国金矿集区及其资源潜力探讨[J]. 中国地质, 2012, 39(5):1125-1142.
[1] Wang C H, Wang D H, Huang F, et al. The major gold concentration areas in China and their resource potentials[J]. Geology in China, 2012, 39(5):1125-1142.
[2] 陈毓川, 李兆鼎, 毋瑞身, 等. 中国金矿床及其成矿规律[M]. 北京: 地质出版社, 2001.
[2] Chen Y C, Li Z D, Wu R S, et al. Gold deposits and metallogeny in China[M]. Beijing: Geological Publishing House, 2001.
[3] 王成辉, 徐珏, 黄凡, 等. 中国金矿资源特征及成矿规律概要[J]. 地质学报, 2014, 88(12):2315-2325.
[3] Wang C H, Xu J, Huang F, et al. Resources characteristics and outline of regional metallogeny of gold deposits in China[J]. Acta Geologica Sinica, 2014, 88(12):2315-2325.
[4] Reich M, Deditius A, Chryssoulis S, et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104:42-62.
doi: 10.1016/j.gca.2012.11.006
[5] 高振敏, 杨竹森, 李红阳, 等. 黄铁矿载金的原因和特征[J]. 高校地质学报, 2000(2):156-162.
[5] Gao Z M, Yang Z S, Li H Y, et al. Genesis and characteristics of gold hosted by pyrite[J]. Geological Journal of China Universities, 2000(2):156-162.
[6] Seo J H, Guillong M, Heinrich C A. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits[J]. Earth and Planetary Science Letters, 2009, 282(1-4):323-328.
doi: 10.1016/j.epsl.2009.03.036
[7] Hedenquist J W, Simmons S F, Giggenbach W F, et al. White Island,New Zealand,volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition[J]. Geology, 2003, 21:731-734.
doi: 10.1130/0091-7613(1993)021&lt;0731:WINZVH&gt;2.3.CO;2
[8] Gustafson L B, Hunt J P. The porphyry copper deposit at El Salvador,Chile[J]. Economic Geology, 2005, 70:857-912.
doi: 10.2113/gsecongeo.70.5.857
[9] 马生明, 朱立新, 苏磊, 等. 矿化剂元素硫(S)与成矿[J]. 地质学报, 2016, 90(9):2427-2436.
[9] Ma S M, Zhu L X, Su L, et al. Mineralizing agent sulfur and metallogenic process[J]. Acta Geologica Sinica, 2016, 90(9):2427-2436.
[10] 马生明, 朱立新, 张亮亮, 等. 关于胶西北金矿成矿地球化学机制的思考[J]. 物探与化探, 2019, 43(5):925-931.
[10] Ma S M, Zhu L X, Zhang L L, et al. Thoughts on the geochemical mechanism of gold mineralization in the northwest Jiaodong gold province[J]. Geophysical and Geochemical Exploration, 2019, 43(5):925-931.
[11] 马生明, 朱立新, 席明杰, 等. 多维异常体系及其形成机理—矿产地球化学勘查基本准则[M]. 北京: 地质出版社, 2022.
[11] Ma S M, Zhu L X, Xi M J, et al. Multidimensional anomaly system and its formation mechanism-Basic criteria for mineral geochemical exploration[M]. Beijing: Geological Publishing House, 2022.
[12] 张东, 朱立新, 苏磊, 等. 青海五龙沟金矿多属性地球化学异常研究[J]. 地质学报, 2016, 90(10):2874-2886.
[12] Zhang D, Zhu L X, Su L, et al. Study on Multiple attributes geochemical abnormal in Wulonggou gold deposit,Qinghai Province[J]. Acta Geologica Sinica, 2016, 90(10):2874-2886.
[13] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社,1984.
[13] Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press,1984.
[14] 陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004.
[14] Chen J, Wang H N. Geochemistry[M]. Beijing: Science Press, 2004.
[15] Ohmoto H, Rye R O. Isotopes of sulfur and carbon[G]//Geochemistry of Hydrothermal Ore Deposits,Second Edeition. New York: John Wily and Sons,1979.
[16] 陕亮, 郑有业, 许荣科, 等. 硫同位素示踪与热液成矿作用研究[J]. 地质与资源, 2009, 18(3):197-203.
[16] Shan L, Zheng Y Y, Xu R K, et al. Review on sulfur isotopic tracing and hydrothermal metallogenesis[J]. Geology and Resources, 2009, 18(3):197-203.
[17] Jochen H. Stable Isotope Geochemistry[M]. Gewerbestrasse: Springer International Publishing House, 2018.
[18] 杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019, 41(3):196-202.
[18] Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposits[J]. Geology of Chemical Minerals, 2019, 41(3):196-202.
[19] Doran A L, Hollis S P, Menuge J F, et al. A distal,high-grade irish-type orebody:Petrographic,sulfur isotope,and sulfide of the Island Pod Zn-Pb Lisheen,Ireland[J]. Economic Geology, 2022, 117(2):305-326.
doi: 10.5382/econgeo.4882
[20] Ding T, Tan T T, Wang J, et al. Multiple sources for the Baoshan polymetallic Cu-Mo-Pb-Zn deposit,southern Hunan Province,China:Insights from in situ LA-MC-ICP-MS sulfur isotopic compositions[J]. Ore Geology Reviews, 2022, 143:104808.
doi: 10.1016/j.oregeorev.2022.104808
[21] Brusnitsyn A I, Sadykov S A, Perova E N, et al. Genesis of Barite-Galena Ores at the Ushkatyn-III Deposit,Central Kazakhstan:Analysis of geological,mineralogical,and isotopic (delta S-34,delta C-13,delta O-18) data[J]. Geology of Ore Deposits, 2022, 64(3):78-103.
doi: 10.1134/S1075701522030023
[22] Mathieu J, Turner E C, Kontak D J, et al. Geochemical evidence for a topographically driven regional mineralizing fluid[J]. Economic Geology, 2022, 117(7):1451-1480.
doi: 10.5382/econgeo.4959
[23] Zhao Q Q, Zhai D G, Williams-Jones A E, et al. Trace element and isotopic (S,Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit,NE China[J]. American Mineralogist, 2023, 108(1):160-177.
doi: 10.2138/am-2022-8142
[24] Thode H G, Monster J, Dunford H B. Sulphur isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 1961, 25(3):159-174.
doi: 10.1016/0016-7037(61)90074-6
[25] Glesemann A, Jaeger H J, Norman A L, et al. Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer[J]. Analytical Chemistry, 1994, 66(18):2816-2819.
doi: 10.1021/ac00090a005
[26] Crowe D E, Valley J W, Baker K L. Micro-analysis of sulfur isotope ratios and zonation by laser microprobe[J]. Geochimica et Cosmochimica Acta, 1990, 54(7):2075-2092.
doi: 10.1016/0016-7037(90)90272-M
[27] Bendall C, Lahaye Y, Fiebig J, et al. In situ sulfur isotope analysis by laser ablation MC-ICP-MS[J]. Applied Geochemistry, 2006, 21(5):782-787.
doi: 10.1016/j.apgeochem.2006.02.012
[28] Craddock P R, Rouxel O J, Ball L A, et al. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS[J]. Chemical Geology, 2008, 253(3/4):102-113.
doi: 10.1016/j.chemgeo.2008.04.017
[29] Kozdon R, Kita N T, Huberty J M, et al. In situ sulfur isotope analysis of sulfide minerals by SIMS:Precision and accuracy,with application to thermometry of -3.5Ga Pilbara cherts[J]. Chemical Geology, 2010, 275(3/4):243-253.
doi: 10.1016/j.chemgeo.2010.05.015
[30] Bühn B, Santos R V, Dardenne M A, et al. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS[J]. Chemical Geology, 2012,312-313:163-176.
[31] Seal R R. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy & Geochemistry, 2006, 61:633-677.
[32] 杨宝菊, 曾志刚, 陈帅, 等. 激光探针硫同位素分析方法及应用[J]. 海洋科学, 2015, 39(7):124-129.
[32] Yang B J, Zeng Z G, Chen S, et al. The laser microprobe sulfur isotope measurement and applications[J]. Marine Sciences, 2015, 39(7):124-129.
[33] Xue Y X, Campbell I, Ireland T R, et al. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology, 2013, 41(7):791-794.
doi: 10.1130/G34186.1
[34] Tanner D, Henley R W, Mavrogenes J A, et al. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit,Chile[J]. Contributions to Mineralogy and Petrology, 2016, 171(4):1-17.
doi: 10.1007/s00410-015-1217-5
[35] Yan J, Hu R Z, Liu S, et al. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China:New insights into the origin and evolution of Au-bearing fluids[J]. Ore Geology Reviews, 2018, 92:29-41.
doi: 10.1016/j.oregeorev.2017.10.015
[36] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12):3479-3496.
[36] Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12):3479-3496.
[37] Chaussidon M, Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees,France):An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10):2835-2846.
doi: 10.1016/0016-7037(90)90018-G
[38] 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.
[38] Zheng Y F, Chen J F. Stable isotope geochemistry[M]. Beijing: Science Press, 2000.
[39] Taylor B E. Magmatic volatiles-isotopic variation of C,H,and S[J]. Reviews in Mineralogy, 1986, 16:185-225.
[40] Wallace P, Carmichael I S E. Sulfur in basaltic magmas[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1863-1874.
doi: 10.1016/0016-7037(92)90316-B
[41] Rye R O. The evolution of magmatic fluids in the epithermal environment-the stable isotope perspective[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1993, 88(3):733-753.
doi: 10.2113/gsecongeo.88.3.733
[42] Strauss H. The isotopic composition of sedimentary sulfur through time[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1-4):97-118.
doi: 10.1016/S0031-0182(97)00067-9
[43] Shen Y A, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J]. Nature, 2001, 410(6824):77-81.
doi: 10.1038/35065071
[44] Farquhar J, Wing B A. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth and Planetary Science Letters, 2003, 213(1-2):1-13.
doi: 10.1016/S0012-821X(03)00296-6
[45] Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews, 2006, 75(1-4):59-83.
doi: 10.1016/j.earscirev.2005.10.004
[46] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67:551-578.
doi: 10.2113/gsecongeo.67.5.551
[47] Kerrich R, Goldfarb R, Groves D I, et al. The characteristics,origins,and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D:Earth sciences, 2000, 43(S1):1-68.
[48] Deng J, Wang Q. Gold mineralization in China:Metallogenic provinces,deposit types and tectonic framework[J]. Gondwana Research, 2016, 36:219-274.
doi: 10.1016/j.gr.2015.10.003
[49] Wang C M, Bagas L, Deng J, et al. Crustal architecture and its controls on mineralisation in the North China Craton[J]. Ore Geology Reviews, 2018, 98:109-125.
doi: 10.1016/j.oregeorev.2018.05.016
[50] Deng J, Yang L Q, Li R H, et al. Regional structural control on the distribution of world-class gold deposits:An overview from the Giant Jiaodong Gold Province,China[J]. Geological Journal, 2019, 54(1):378-391.
doi: 10.1002/gj.3186
[51] Wang Q F, Yang L, Zhao H S, et al. Towards a universal model for orogenic gold systems:A perspective based on Chinese examples with geodynamic,temporal,and deposit-scale structural and geochemical diversity[J]. Earth-Science Reviews, 2022, 224:103861.
doi: 10.1016/j.earscirev.2021.103861
[52] Chang Z S, Large R R, Maslennikov V. Sulfur isotopes in sediment-hosted orogenic gold deposits:Evidence for an early timing and a seawater sulfur source[J]. Geology, 2008, 36(12):971-974.
doi: 10.1130/G25001A.1
[53] Lin S R, Hu K, Cao J, et al. An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin,southwest China[J]. Ore Geology Reviews, 2021, 134:104187.
doi: 10.1016/j.oregeorev.2021.104187
[54] Barker S L L, Hickey K A, Cline J S, et al. Uncloaking invisible gold:Use of NanoSIMS to evaluate gold,trace elements,and sulfur isotopes in pyrite from Carlin-type gold deposits[J]. Economic Geology, 2009, 104(7):897-904.
doi: 10.2113/econgeo.104.7.897
[55] Chen M H, Zhang Z Q, Santosh M, et al. The Carlin-type gold deposits of the “golden triangle” of SW China:Pb and S isotopic constraints for the ore genesis[J]. Journal of Asian Earth Sciences, 2015, 103:115-128.
doi: 10.1016/j.jseaes.2014.08.022
[56] Li X H, Fan H R, Zhu R X, et al. In-situ monazite Nd and pyrite S isotopes as fingerprints for the source of ore-forming fluids in the Jiaodong gold province[J]. Ore Geology Reviews, 2022, 147:104965.
doi: 10.1016/j.oregeorev.2022.104965
[57] Kakegawa T. Sulfur isotope evidence for the origin of 3.4 to 3.1 Ga pyrite at the Princeton gold mine,Barberton Greenstone Belt,South Africa[J]. Precambrian Research, 1999, 96(3/4):209-224.
doi: 10.1016/S0301-9268(99)00006-6
[58] Selvaraja V, Fiorentini M L, Jeon H, et al. Evidence of local sourcing of sulfur and gold in an Archaean sediment-hosted gold deposit[J]. Ore Geology Reviews, 2017, 89:909-930.
doi: 10.1016/j.oregeorev.2017.07.021
[59] LaFlamme C, Sugiono D, Thébaud N, et al. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 2018, 222:436-446.
doi: 10.1016/j.gca.2017.11.003
[60] 朱乔乔, 谢桂青. 湖北金山店矽卡岩型铁矿田硫同位素特征及其地质意义[J]. 岩石学报, 2018, 34(9):2518-2534.
[60] Zhu Q Q, Xie G Q. Sulfur isotopic character and geological implications for the Jinshandian Fe skarn ore field,Hubei Province[J]. Acta Petrologica Sinica, 2018, 34(9):2518-2534.
[61] 王斌, 李景朝, 王成锡, 等. 中国金矿资源特征及勘查方向概述[J]. 高校地质学报, 2020, 26(2):121-131.
doi: 10.16108/j.issn1006-7493.2019033
[61] Wang B, Li J C, Wang C X, et al. An overview of characteristics and prospecting of gold ore deposits in China[J]. Geological Journal of China Universities, 2020, 26(2):121-131.
doi: 10.16108/j.issn1006-7493.2019033
[62] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9):1758-1771.
[62] Song M C. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area,Shandong Province[J]. Geological Bulletin of China, 2015, 34(9):1758-1771.
[63] Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt,East China:Geochronological,geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 2005, 214(1/2):99-125.
doi: 10.1016/j.chemgeo.2004.08.053
[64] 郭敬辉, 陈福坤, 张晓曼, 等. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报, 2005, 21(4):1281-1301.
[64] Guo J H, Chen F K, Zhang X M, et al. Evolution of syn-to post-collisional magmatism from north Sulu UHP belt,Eastern China:Zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2005, 21(4):1281-1301.
[65] 胡芳芳, 范宏瑞, 杨进辉, 等. 胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定[J]. 科学通报, 2004, 49(12):1191-1198.
[65] Hu F F, Fan H R, Yang J H, et al. Ore-forming age of gold-bearing quartz vein-type gold deposit in Jiaodong Rushan:U-Pb geochronology by hydrothermal zircon SHRIMP[J]. Chinese Science Bulletin, 2004, 49(12):1191-1198.
[66] 郭春影, 张文钊, 葛良胜, 等. 胶东西北部金矿床深部资源潜力与找矿方向[J]. 地质与勘探, 2012, 48(1):58-67.
[66] Guo C Y, Zhang W Z, Ge L S, et al. Deep prospecting potential of gold deposits in the northwestern Jiaodong Peninsula and their ore-search direction[J]. Geology and Exploration, 2012, 48(1):58-67.
[67] 宋明春, 崔书学, 尹丕厚. 胶西北金矿集中区深部大型—超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010.
[67] Song M C, Cui S X, Yin P H. Ore search and metallogenic model of deep large and ultra-large gold deposits in the gold concentration area of northwestern Jiaodong Peninsula[M]. Beijing: Geological Publishing House, 2010.
[68] 王义天, 叶会寿, 刘俊辰, 等. 小秦岭金矿田三叠纪成矿事件的伸展构造背景:构造岩的40Ar-39Ar年代学证据[J]. 岩石学报, 2021, 37(8):2419-2430.
[68] Wang Y T, Ye H S, Liu J C, et al. Extensional tectonic setting of the Triassic metallogenic event in the Xiaoqinling goldfield:Evidence from 40Ar-39Ar chronology of the tectonite[J]. Acta Petrologica Sinica, 2021, 37(8):2419-2430.
doi: 10.18654/1000-0569/2021.08.10
[69] 李铁刚, 武广, 陈公正, 等. 华北克拉通南缘小秦岭矿集区灵湖金矿床成因:流体包裹体和H-O、S-Pb同位素证据[J]. 地球科学与环境学报, 2020, 42(5):569-583.
[69] Li T G, Wu G, Chen G Z, et al. Genesis of Linghu gold deposit in Xiaoqinling ore district,the southern margin of North China Craton,China:evidence from fluid inclusions,H-O and S-Pb isotopic compositions[J]. Journal of Earth Sciences and Environment, 2020, 42(5):569-583.
[70] Chen Y J, Zhao Y C. Geochemical characteristics and evolution of REE in the early Precambrian sediments:Evidences from the southern margin of the North China Craton[J]. Episodes, 1997, 20(2):109-116.
doi: 10.18814/epiiugs/1997/v20i2/008
[71] 徐九华, 何知礼, 申世亮, 等. 小秦岭文峪—东闯金矿床稳定同位素地球化学及矿液矿质来源[J]. 地质找矿论丛, 1993, 8(2):87-100.
[71] Xu J H, He Z L, Shen S L, et al. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials[J]. Contributions to Geology and Mineral Resources Research, 1993, 8(2):87-100.
[72] 马克忠, 陈懋弘. 桂西北百勇金矿、百蓬金矿粗粒黄铁矿和毒砂的矿物学特征[J]. 矿物学报, 2020, 40(5):601-614.
[72] Ma K Z, Chen M H. Mineralogical characteristics of coarse-grained pyrites and arsenopyrites in the Baiyong and Baipeng gold deposits,Northwest Guangxi,China[J]. Acta Mineralogica Sinica, 2020, 40(5):601-614.
[73] 毛景文, 胡瑞忠, 陈毓川. 大规模成矿作用与大型矿集区[M]. 北京: 地质出版社, 2005.
[73] Mao J W, Hu R Z, Chen Y C. Large-scale metallogeny and large ore-concentrated areas[M]. Beijing: Geological Publishing House, 2005.
[74] 韩至钧, 盛学庸. 黔西南金矿及其成矿模式[J]. 贵州地质, 1996, 13(2):146-153.
[74] Han Z J, Sheng X Y. Gold deposits in southwest Guizhou and their metallogenetic model[J]. Guizhou Geology, 1996, 13(2):146-153.
[75] 牛翠祎, 王科强, 李绍儒. 滇黔桂成矿区金矿资源预测评价[J]. 中国地质, 2011, 38(6):1576-1583.
[75] Niu C Y, Wang K Q, Li S R. Prediction and evaluation of gold resources in the Yunnan-Guizhou-Guangxi metallogenic area[J]. Geology in China, 2011, 38(6):1576-1583.
[76] 倪师军, 刘显凡, 金景福. 滇黔桂金三角区微细浸染型金矿床成矿流体地球化学特征[M]. 成都: 成都科技大学出版社,1997.
[76] Ni S J, Liu X F, Jin J F. Geochemical characteristic of ore-forming fluid of micro-dissiment gold deposits in the contiguous zone of Yunnan-Guizhou-Guangxi Provinces[M]. Chengdu: Chengdu Technological University Press,1997.
[77] 朱赖民, 刘显凡, 金景福, 等. 滇—黔—桂微细浸染型金矿床时空分布与成矿流体来源研究[J]. 地质科学, 1998, 33(4):463-474.
[77] Zhu L M, Liu X F, Jin J F, et al. The study of the time-space distribution and source of ore-forming fluid for the fine-dissimented gold deposits in the Yunnan-Guizhou-Guangxi area[J]. Scientia Geologica Sinica, 1998, 33(4):463-474.
[78] 肖龙, 叶乃清, 张明华. 滇黔桂地区微细粒浸染型金矿构造控制特征[J]. 桂林工学院学报, 1997, 17(3):234-239.
[78] Xiao L, Ye N Q, Zhang M H. The characteristics of ore-controlling structure and ore-finding prospect in the contiguous zone of Yunnan-Guizhou-Guangxi area[J]. Journal of Guilin Institute of Technology, 1997, 17(3):234-239.
[79] 韩雪. 贵州烂泥沟卡林型金矿床地质地球化学特征及成因探讨[D]. 成都: 成都理工大学, 2012.
[79] Han X. The study on geologic-geochemical characteristics and causes discusses of the Lannigou carlin-type gold deposits in Guizhou[D]. Chengdu: Chengdu University of Technology, 2012.
[80] Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009, 5(5):281-287.
doi: 10.2113/gselements.5.5.281
[81] 朱赖民, 金景福, 何明友, 等. 初论黔西南微细浸染型金矿床深源流体成矿[J]. 矿物岩石地球化学通报, 1997, 16(3):35-39.
[81] Zhu L M, Jin J F, He M Y, et al. An initial study of the mineralization of plutonic fluid of the fine-disseminated gold deposit in Southwest Guizhou Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 1997, 16(3):35-39.
[82] 郭春影. 胶东三山岛—仓上金矿带构造—岩浆—流体金成矿系统[D]. 北京: 中国地质大学(北京), 2009.
[82] Guo C Y. Tectonic setting,magmatic sequence and fluid of gold metallogenic system of the Sanshandao-Cangshang fault in Jiaodong,China[D]. Beijing: China University of Geoscience (Beijing), 2009.
[83] 张佳楠. 山东莱州焦家金矿床矿化富集规律及矿床成因探讨[D]. 长春: 吉林大学, 2012.
[83] Zhang J N. Mineralization enrichment regularity and the genesis discussed of Jiaojia gold deposit,Laizhou City,Shandong Province[D]. Changchun: Jilin University, 2012.
[84] 宋明春, 宋英昕, 沈昆, 等. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论[J]. 地球化学, 2013, 42(3):274-289.
[84] Song M C, Song Y X, Shen K, et al. Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field,Shandong Peninsula,China[J]. Geochimica, 2013, 42(3):274-289.
[85] Deng J, Liu X F, Wang Q F, et al. Origin of the Jiaodong-type Xinli gold deposit,Jiaodong Peninsula,China:Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65:674-686.
doi: 10.1016/j.oregeorev.2014.04.018
[86] Mills S E, Tomkins A G, Weinberg R F, et al. Anomalously silver-rich vein-hosted mineralisation in disseminated-style gold deposits,Jiaodong gold district,China[J]. Ore Geology Reviews, 2015, 68:127-141.
doi: 10.1016/j.oregeorev.2014.12.014
[87] Wen B J, Fan H R, Santosh M, et al. Genesis of two different types of gold mineralization in the Linglong gold field,China:Constrains from geology,fluid inclusions and stable isotope[J]. Ore Geology Reviews, 2015, 65:643-658.
doi: 10.1016/j.oregeorev.2014.03.018
[88] Xu W G, Fan H R, Yang K F, et al. Exhaustive gold mineralizing processes of the Sanshandao gold deposit,Jiaodong Peninsula,eastern China:Displayed by hydrothermal alteration modeling[J]. Journal of Asian Earth Sciences, 2016, 129:152-169.
doi: 10.1016/j.jseaes.2016.08.008
[89] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid,and gold-deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,eastern China[J]. Ore Geology Reviews, 2016, 72:585-602.
doi: 10.1016/j.oregeorev.2015.08.021
[90] 吴迪. 山东夏甸金矿床地球化学特征及矿床成因探讨[D]. 西安: 长安大学, 2016.
[90] Wu D. Geochemical characteristics and genesis of gold deposits of Xiadian,Shandong[D]. Xi’an: Changan University, 2016.
[91] Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province,eastern China[J]. Earth-Science Reviews, 2020, 208:103274.
doi: 10.1016/j.earscirev.2020.103274
[92] 聂凤军, 江思宏, 赵月明. 小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究[J]. 矿床地质, 2001, 20(2):163-173.
[92] Nie F J, Jiang S H, Zhao Y M. Lead and sulfur isotopic studies of the Wenyu and the Dongchuang quartz vein type gold deposits in Xiaoqinling area,Henan and Shaanxi Provinces,Central China[J]. Mineral Deposits, 2001, 20(2):163-173.
[93] Mao J W, Goldfarb R J, Zhang Z W, et al. Gold deposits in the Xiaoqinling-Xiong'ershan region,Qinling Mountains,central China[J]. Mineralium Deposita, 2002, 37(3/4):306-325.
doi: 10.1007/s00126-001-0248-1
[94] 王斌. 小秦岭金矿地球化学特征及矿床成因探讨[D]. 北京: 中国地质大学(北京), 2009.
[94] Wang B. Geological-geochemical features and genesis of Xiaoqinling gold deposits[D]. Beijing: China University of Geoscience (Beijing), 2009.
[95] 赵海香. 河南小秦岭金矿成矿作用地球化学研究[D]. 南京: 南京大学, 2011.
[95] Zhao H X. Geochemistry of ore-forming processes of the Xiaoqinling gold district,Henan Province[D]. Nanjing: Nanjing University, 2011.
[96] Li J W, Li Z K, Zhou M F, et al. The early cretaceous Yangzhaiyu lode gold deposit,North China Craton:A link between craton reactivation and gold veining[J]. Economic Geology, 2012a, 107(1):43-79.
doi: 10.2113/econgeo.107.1.43
[97] Li J W, Bi S J, Selby D, et al. Giant Mesozoic gold provinces related to the destruction of the North China craton[J]. Earth and Planetary Science Letters, 2012b, 349-350:26-37.
doi: 10.1016/j.epsl.2012.06.058
[98] 任志媛. 小秦岭东部樊岔和义寺山金矿床地质矿化特征与矿床成因[D]. 武汉: 中国地质大学, 2012.
[98] Ren Z Y. Mineralization characteristic and genesis of the Fancha and Yisishan gold deposits in the Eastern Xiaoqinling District[D]. Wuhan: China University of Geoscience, 2012.
[99] Zhou Z J, Chen Y J, Jiang S Y, et al. Geology,geochemistry and ore genesis of the Wenyu gold deposit,Xiaoqinling gold field,Qinling Orogen,southern margin of North China Craton[J]. Ore Geology Reviews, 2014, 59:1-20.
doi: 10.1016/j.oregeorev.2013.12.001
[100] Zhou Z J, Chen Y J, Jiang S Y, et al. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit,Xiaoqinling gold field,Qin ling Orogen,China[J]. Ore Geology Reviews, 2015, 66:47-64.
doi: 10.1016/j.oregeorev.2014.10.020
[101] 盛涛. 豫西地区萑香洼和樊岔金矿黄铁矿成因矿物学研究[D]. 北京: 中国地质大学(北京), 2016.
[101] Sheng T. The Genetic mineralogical study of pyrite in the Huanxiangwa and Fancha gold deposits,Western Henan Province[D]. Beijing: China University of Geoscience (Beijing), 2016.
[102] 展恩鹏, 王玭, 齐楠, 等. 河南灵宝樊岔金矿床成矿流体和同位素地球化学研究[J]. 矿床地质, 2019, 38(3):459-478.
[102] Zhan E P, Wang P, Qi N, et al. Ore-forming fluid and isotope geochemical study of Fancha gold deposit in Lingbao County,Henan Province[J]. Mineral Deposits, 2019, 38(3):459-478.
[103] 刘俊辰. 小秦岭金矿集区成矿物质来源与富集机制[D]. 北京: 中国地质大学(北京), 2020.
[103] Liu J C. Origin of the ore-forming materials and enrichment mechanism in the Xiaoqinling goldfield,southern margin of the North China Craton:A case study of the Fancha gold deposit[D]. Beijing: China University of Geoscience (Beijing), 2020.
[104] Li S S, Li L, Li S R, et al. Age and mineralization processes of decratonic lode gold deposits in the southern North China Craton:Constraints from trace elements,in-situ S-Pb isotopes and Rb-Sr geochronology of pyrite from the Chen'er gold deposit[J]. Ore Geology Reviews, 2022, 145:104888.
doi: 10.1016/j.oregeorev.2022.104888
[105] Zhao S R, Li Z K, Zhao X F, et al. New constraints on genesis of the Qiangma gold deposit,southern North China Craton:Evidence from rutile U-Pb dating,pyrite trace element composition and S-Pb isotopes[J]. Ore Geology Reviews, 2022, 141:104647.
doi: 10.1016/j.oregeorev.2021.104647
[106] 刘建中, 邓一明, 刘川勤, 等. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式[J]. 中国地质, 2006, 33(1):169-177.
[106] Liu J Z, Deng Y M, Liu C Q, et al. Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County,Guizhou Province[J]. Geology in China, 2006, 33(1):169-177.
[107] Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposits in Southwest Guizhou,PRC:Their geological setting and origin in relation to mineralogical,fluid inclusion,and stable-isotope characteristics[J]. International Geology Review, 2010, 45(5):407-470.
doi: 10.2747/0020-6814.45.5.407
[108] 王泽鹏, 夏勇, 宋谢炎, 等. 太平洞—紫木凼金矿区同位素和稀土元素特征及成矿物质来源探讨[J]. 矿物学报, 2012, 32(1):93-100.
[108] Wang Z P, Xia Y, Song X Y, et al. Isotopes and REE characteristic and ore-forming materials source of the Taipingdong-Zimudang gold deposit[J]. Acta Mineralogica Sinica, 2012, 32(1):93-100.
[109] 黄建国, 李虎杰, 李文杰, 等. 贵州戈塘金矿含矿岩系元素地球化学特征[J]. 中国地质, 2012, 39(5):1318-1326.
[109] Huang J G, Li H J, Li W J, et al. Element geochemistry of ore-bearing rock series in the Getang gold deposit,Guizhou Province[J]. Geology in China, 2012, 39(5):1318-1326.
[110] 范军. 黔西南戈塘大型金矿床地质地球化学及成因研究[D]. 昆明: 昆明理工大学, 2015.
[110] Fan J.Study on geochemistry and metallogenic mechanism of the Getang large-scale gold ore deposit, Guizhou Province,China[D]. Kunming: Kunming University of Science and Technology, 2015.
[111] 靳晓野. 黔西南泥堡、水银洞和丫他金矿的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学, 2017.
[111] Jin X Y. Geology,mineralization and genesis of the Nibao,Shuiyindong and Yata gold deposits in SW Guizhou Province,China[D]. Wuhan: China University of Geoscience, 2017.
[112] Yan J, Hu R Z, Liu S, et al. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China:New insights into the origin and evolution of Au-bearing fluids[J]. Ore Geology Reviews, 2018, 92:29-41.
doi: 10.1016/j.oregeorev.2017.10.015
[113] 张馨月, 胡煜昭, 刘晓震. 贵州尾若金矿床载金矿物EPMA分析与原位硫同位素特征[J]. 矿物学报, 2019, 39(1):98-107.
[113] Zhang X Y, Hu Y Z, Liu X Z. Electron probe micro analysis (EPMA) and the in-situ sulfur isotope analysis of gold-bearing minerals in the Weiruo gold deposit,Guizhou Province,China[J]. Acta Mineralogica Sinica, 2019, 39(1):98-107.
[114] Li J X, Hu R Z, Zhao C H, et al. Sulfur isotope and trace element compositions of pyrite determined by NanoSIMS and LA-ICP-MS:new constraints on the genesis of the Shuiyindong Carlin-like gold deposit in SW China[J]. Mineralium Deposita, 2020, 55(7):1279-1298.
doi: 10.1007/s00126-019-00929-w
[115] Lin S R, Hu K, Cao J, et al. An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin,southwest China[J]. Ore Geology Reviews, 2021, 134:104187.
doi: 10.1016/j.oregeorev.2021.104187
[116] Yang L, Wang Q F, Large R R, et al. Texture and geochemistry of pyrite from the Jinya,Nakuang and Gaolong gold deposits in the Youjiang Basin:implications for basin-scale gold mineralization[J]. Mineralium deposita, 2022, 57(8):1367-1390.
doi: 10.1007/s00126-022-01115-1
[117] 宋明春, 宋英昕, 丁正江, 等. 胶东金矿床:基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4):406-422.
[117] Song M C, Song Y X, Ding Z J, et al. Jiaodong gold deposits:Essential characteristics and major controversy[J]. Gold Science and Technology, 2018, 26(4):406-422.
[118] Xu X S, Griffin W L, Ma X, et al. The Taihua group on the southern margin of the North China Craton:Further insights from U-Pb ages and Hf isotope compositions of zircons[J]. Mineralogy and Petrology, 2009, 97(1/2):43-59.
doi: 10.1007/s00710-009-0062-5
[119] 胡瑞忠, 彭建堂, 马东升, 等. 扬子地块西南缘大面积低温成矿时代[J]. 矿床地质, 2007, 26(6):583-596.
[119] Hu R Z, Peng J T, Ma D S, et al. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif[J]. Mineral Deposits, 2007, 26(6):583-596.
[120] Liu J C, Wang Y T, Mao J W, et al. Precise ages for lode gold mineralization in the Xiaoqinling gold field,southern margin of the North China Craton:New constraints from in situ U-Pb dating of Hydrothermal monazite and rutile[J]. Economic Geology, 2021, 116(3):773-786.
doi: 10.5382/econgeo.4800
[121] Chen M H, Bagas L, Liao X, et al. Hydrothermal apatite SIMS Th-Pb dating:Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao,SW China[J]. Lithos, 2019,324-325:418-428.
[122] 蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭:两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11):2727-2738.
[122] Jiang S Y, Dai B Z, Jiang Y H, et al. Jiaodong and Xiaoqinling:Two orogenic gold provinces formed in different tectonic settings[J]. Acta Petrologica Sinica, 2009, 25(11):2727-2738.
[123] Hu R Z, Fu S L, Huang Y, et al. The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 2017, 137:9-34.
doi: 10.1016/j.jseaes.2016.10.016
[124] 徐九华, 谢玉玲, 申世亮. 小秦岭与胶东金矿床的成矿流体特征对比[J]. 矿床地质, 1997, 16(2):56-67.
[124] Xu J H, Xie Y L, Shen S L. A comparison of ore-forming fluids between gold deposits in Xiaoqinling Mountains and those in Jiaodong Peninsula[J]. Mineral Deposits, 1997, 16(2):56-67.
[125] De Wit M J, Thiart C. Metallogenic fingerprints of Archean Cratons[M]. London: Geological Society Special Publication, 2005:59-70.
[126] 汪洋. 华北和扬子克拉通的成矿指纹:与冈瓦纳大陆克拉通的对比[J]. 矿物学报, 2015, 35(S1):62-63.
[126] Wang Y. Metallogenetic fingerprints of the North China and Yangtze cratons:Comparison with the Gondwana Cratons[J]. Acta Mineralogica Sinica, 2015, 35(S1):62-63.
[127] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学:地球科学, 2015, 45(8):1153-1168.
[127] Zhu R X, Fan H R, Li J W, et al. Decratonic gold deposits[J]. Science China:Earth Sciences. 2015, 45(8):1153-1168.
[128] 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1):24-36.
[128] Zhai M G. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits. 2010, 29(1):24-36.
[129] Li J, Yang Z M, Song M C, et al. Gold remobilization of the Sanshandao gold deposit,Jiaodong Peninsula,Eastern China:Perspective from in-situ sulfide trace elements and sulfur isotopes[J]. Ore Geology Reviews, 2023, 158:105505.
doi: 10.1016/j.oregeorev.2023.105505
[130] 王国强. 胶西北新城金矿床成矿作用:多元同位素示踪[D]. 北京: 中国地质大学(北京), 2016.
[130] Wang G Q. Mineralization of the Xincheng gold deposit,Northwest Jiaodong Peninsula:Multiple isotope tracer[D]. Beijing: China University of Geoscience (Beijing), 2016.
[131] 黄德业. 胶东金矿成矿系列硫同位素研究[J]. 矿床地质, 1994, 13(1):75-87.
[131] Huang D Y. Sulfur isotope studies of the metallogenic series of gold deposits in Jiaodong(Eastern Shandong)area[J]. Mineral Deposits, 1994, 13(1):75-87.
[132] 王沛成, 李洪奎, 张忠义, 等. 胶东群新议[J]. 地层学杂志, 1999, 23(4):291-293.
[132] Wang P C, Li H K, Zhang Z Y, et al. New comments on the Jiaodong Group[J]. Journal of Stratigraphy, 1999, 23(4):291-293.
[133] 王世进, 万渝生, 郭瑞朋, 等. 鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年[J]. 山东国土资源, 2011, 27(4):1-7.
[133] Wang S J, Wan Y S, Guo R P, et al. SHRIMP zircon dating of Linglong type (Superunit) granite in Eastern Shandong Province[J]. Shandong Land and Resources, 2011, 27(4):1-7.
[134] 关康, 罗镇宽, 苗来成, 等. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究[J]. 地质科学, 1998, 33(3):64-74.
[134] Guan K, Luo Z K, Miao L C, et al. SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye district[J]. Scientia Geologica Sinica, 1998, 33(3):64-74.
[135] Wu H J, He Y, Li S, et al. Partial melts of intermediate-felsic sources in a wedged thickened crust:Insights from granites in the Sulu Orogen[J]. Journal of Petrology, 2020, 61(5):egaa053.
[136] Chen Y J, Pirajno F, Sui Y H. Isotope geochemistry of the Tieluping silver-lead deposit,Henan,China:A case study of orogenic silver-dominated deposits and related tectonic setting[J]. Mineralium Deposita, 2004, 39(5/6):560-575.
doi: 10.1007/s00126-004-0429-9
[137] Fan H R, Zhai M G, Xie Y H, et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J]. Mineralium Deposita, 2003, 38(6):739-750.
doi: 10.1007/s00126-003-0368-x
[138] Hu F F, Fan H R, Jiang X H, et al. Fluid inclusions at different depths in the Sanshandao gold deposit,Jiaodong Peninsula,China[J]. Geofluids, 2013, 13(4):528-541.
doi: 10.1111/gfl.2013.13.issue-4
[139] Deng J, Wang C M, Bagas L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula,China:Constraints from zircon U-Pb,illite K-Ar,and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8):987-1006.
doi: 10.1007/s00126-015-0584-1
[140] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit,Jiaodong Peninsula,China:Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1):105-126.
doi: 10.2113/econgeo.111.1.105
[141] 赵新福, 李占轲, 赵少瑞, 等. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统[J]. 地球科学, 2019, 44(1):52-68.
[141] Zhao X F, Li Z K, Zhao S R, et al. Early Cretaceous regional-scale magmatic-hydrothermal metallogenic system at the southern margin of the North China Carton[J]. Earth Science, 2019, 44(1):52-68.
[142] Peng Y W, Gu X X, Zhang Y M, et al. Ore-forming process of the Huijiabao gold district,southwestern Guizhou Province,China:Evidence from fluid inclusions and stable isotopes[J]. Journal of Asian Earth Sciences, 2014, 93:89-101
doi: 10.1016/j.jseaes.2014.06.022
[143] 卢焕章, 朱笑青, 单强, 等. 金矿床中金与黄铁矿和毒砂的关系[J]. 矿床地质. 2013, 32(4):823-842.
[143] Lu H Z, Zhu X Q, Shan Q, et al. Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits[J]. Mineral Deposits, 2013, 32(4):823-842.
[1] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[2] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 岳大斌, 王章翔, 陈加中, 杨秀娟. 综合技术方法在寻找含矿岩浆通道中的应用——以四川杨柳坪岩浆铜镍硫化物矿床为例[J]. 物探与化探, 2021, 45(3): 601-608.
[5] 官东超. 石墨炉原吸收光谱法测定化探样品中超痕量铂钯[J]. 物探与化探, 2018, 42(5): 1054-1058.
[6] 郭友钊, 张振海, 张杰, 李磊. 北山成矿带黑山铜镍硫化物矿区物性特征及其找矿意义[J]. 物探与化探, 2017, 41(4): 662-666.
[7] 韩伟, 刘华忠, 王成文, 孔牧, 宋云涛, 王乔林. 沙泉子铜镍矿壤中汞气和二氧化硫气体地球化学测量[J]. 物探与化探, 2016, 40(6): 1077-1081.
[8] 郭友钊, 郭心玮, 王兴春, 李磊, 吴树宽. 东昆仑夏日哈木铜镍硫化物矿床成矿作用的磁参数Q值试研究[J]. 物探与化探, 2015, 39(6): 1278-1283.
[9] 武军杰, 杨毅, 李貅, 张杰, 王兴春, 邓晓红. 新疆天宇铜镍矿区瞬变电磁特征研究[J]. 物探与化探, 2015, 39(6): 1113-1118.
[10] 胡树起, 刘崇民, 马生明. 铅硫同位素在地球化学勘查中的应用[J]. 物探与化探, 2015, 39(2): 366-370.
[11] 梁建刚, 赵更新, 张国利, 高学生. 二连—东乌旗一带航空物探异常查证若干问题[J]. 物探与化探, 2014, 38(5): 956-961.
[12] 骆燕, 曾阳, 石岩, 杨波, 李兵海, 郑圻森. 航空瞬变电磁法在火山岩型块状硫化物矿区的试验[J]. 物探与化探, 2014, 38(4): 840-845.
[13] 刘光永, 戴茂昌, 祁进平, 张锦章. 福建省紫金山铜金矿床原生晕地球化学特征及深部找矿前景[J]. 物探与化探, 2014, (3): 434-440.
[14] 杨帆, 刘华忠, 张华, 孔牧, 邓艳龙, 周海涛. 东天山地区土壤中碱性障与元素分布的关系[J]. 物探与化探, 2011, 35(4): 438-442.
[15] 刘伟, 余友, 张明会. 南秘鲁QUELLAVECO铜矿激电测深异常[J]. 物探与化探, 2010, 34(4): 444-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com