E-mail Alert Rss
 

物探与化探, 2024, 48(2): 296-313 doi: 10.11720/wtyht.2024.1177

地质调查·资源勘查

中国典型金矿集区硫同位素组成及相关问题思考

兰瑞烜,1,2, 赵红坤1,2, 唐世新1, 段壮1, 马生明,1

1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000

2.中国地质大学(北京),北京 100083

Sulfur isotopic composition and related issues of typical gold ore districts in China

LAN Rui-Xuan,1,2, ZHAO Hong-Kun1,2, TANG Shi-Xin1, DUAN Zhuang1, MA Sheng-Ming,1

1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. China University of Geosciences (Beijing), Beijing 100083, China

通讯作者: 马生明(1963-),男,教授级高工,主要从事勘查地球化学理论方法研究工作。Email:msmigge@163.com

责任编辑: 蒋实

收稿日期: 2023-04-18   修回日期: 2023-09-12  

基金资助: 科技基础资源调查专项资金(2022FY101800)
中央级公益性科研院所基本科研业务费专项资金(AS2022J11)
国家重点研发计划项目(2018YFE0208300)

Received: 2023-04-18   Revised: 2023-09-12  

作者简介 About authors

兰瑞烜(1995-),男,在读博士研究生,勘查地球化学研究方向。Email:lanruixuan@email.cugb.edu.cn

摘要

在过去十年找矿突破战略行动上,金矿勘查在我国取得了重大的进展,展现出了巨大的金找矿潜力。矿化剂元素硫与金矿的形成密切相关,已有国内外学者证明硫是矿床形成过程中最重要的元素。硫同位素被广泛用于示踪金矿中的矿质来源,不同的金矿具有不同的地质背景,硫同位素的组成特征受不同硫源控制,金矿中的硫同位素可以反映成矿的地质背景。矿集区尺度的硫同位素在时间—空间分布特征上具有理论意义,在指导找矿勘查方面也具有重要作用。我国的金矿资源可以划分为42个金矿集区,其中胶东、小秦岭、滇黔桂3个金矿集区最为典型,梳理和总结3个典型金矿集区硫同位素特征的异同,可为今后的金矿找矿勘查提供理论和方法支撑。

关键词: ; 硫同位素; 金矿集区

Abstract

In the Prospecting Breakthrough Strategy (2011~2020), China has made significant progress in the exploration of gold deposits, demonstrating considerable prospecting potential. Element sulfur, a mineralizer, is closely associated with the formation of gold deposits, proved to be the most significant element in gold deposit formation by scholars at home and abroad. Sulfur isotopes have been extensively used to trace the sources of minerals in gold deposits. Different gold deposits reside in distinct geological settings. Since sulfur isotopic compositions are governed by various sulfur sources, sulfur isotopes in gold deposits can reflect the geological settings of mineralization. The ore-district-scale spatio-temporal distribution of sulfur isotopes has theoretical implications, playing a significant role in guiding ore prospecting. The gold resources in China are distributed in 42 gold ore districts, typified by Jiaodong, Xiaoqinling, and Yunnan-Guizhou-Guangxi. This study comparatively analyzed and summarized the characteristics of sulfur isotopes in the three typical gold ore districts, providing theoretical and methodological support for future gold prospecting.

Keywords: sulfur; sulfur isotope; gold ore district

PDF (5941KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

兰瑞烜, 赵红坤, 唐世新, 段壮, 马生明. 中国典型金矿集区硫同位素组成及相关问题思考[J]. 物探与化探, 2024, 48(2): 296-313 doi:10.11720/wtyht.2024.1177

LAN Rui-Xuan, ZHAO Hong-Kun, TANG Shi-Xin, DUAN Zhuang, MA Sheng-Ming. Sulfur isotopic composition and related issues of typical gold ore districts in China[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 296-313 doi:10.11720/wtyht.2024.1177

0 引言

由于兼具有金融、货币和商品的独特属性,黄金有别于其他金属而成为一种非常重要的战略矿种[1]。我国金矿资源较为丰富,但类型多样,成矿地质条件复杂[2]。近年来,随着黄金科研工作和商业勘探投入的加大,我国金矿找矿和黄金产业取得了较大突破,从2009年起,我国连续5年成为世界第一产金大国;仅在找矿突破战略行动第一阶段(2011~2013年),我国就新增金矿资源储量达2 395 t,自2011~2020年这十年来,我国在找矿突破战略行动上取得了重要的进展,其中新增金矿资源量8 085 t,约占总量的50%;以上均表明我国金矿找矿潜力巨大,但找矿突破的前提是要查明成矿条件,加强成矿规律研究,以指导找矿勘查工作部署[3]

黄铁矿(FeS2)是地壳中最常见的硫化物,也是热液金矿体系中的主要产物[4],约有98%的金矿床是以黄铁矿为主要的载金矿物[5],野外观测则发现大量的金矿化与黄铁矿化共生。而元素硫(S)作为黄铁矿必不可少的组成物质之一,与金矿化密切相关,有研究者认为,S是矿床形成过程中最重要的化学元素,大多数具有经济意义的元素(金、银、铜、铅、锌)都具有亲S的地球化学属性[6],并且在岩浆—热液矿床中,S的富集程度高于其自身任何一种成矿元素[7],斑岩铜矿就是一种地壳的S异常,并且这种异常通常富集10亿t以上的S[8]。近年来相关研究结果证实[9-12],金成矿与S富集密切相关,直接证据是构造蚀变岩型、造山型等种类金矿赋矿地质体中均高度富S。

S位于元素周期表的第三周期第六族,是典型的半金属元素[13]。在自然界中,S有4个同位素(32S、33S、34S、36S),其平均相对丰度分别为95.018%、0.750%、4.215%、0.107%,S同位素组成表示为δ34S,δ34S(‰)=[(34S/32S)样品/ (34S/32S)标准-1]×1000,标准为迪亚布罗峡谷铁陨石中的陨硫铁(CDT)[14]

作为一种稳定同位素,S同位素被广泛应用于示踪矿质来源[15-23],在研究金成矿过程时,研究者利用S同位素示踪金的来源,无论是传统的全分析技术[24-25]还是新兴的微区原位分析技术[26-30],均是以黄铁矿为主要的分析对象[31-32],不仅可以得到准确的研究结果[33-36],同时也有力地证明了S与Au成矿的密切联系。S同位素组成特性受其来源控制(壳源、幔源、海水源)[16,37-38],不同来源的S其形成环境(包括自然环境、地质背景、空间、时间等)存在差异[39-45],而金成矿也有着不同的地质背景[46-51],按照S形成环境与金成矿地质背景间的逻辑相关性分析,金矿床中S同位素组成特性可以反映金成矿地质背景[52-53],或者换言之,不同地质背景条件形成的金矿床中S的来源不同[54-56]。产出在不同大地构造单元中的金矿,其空间、时间分布均与S密切相关,但S的来源却不同[57-59],由此引发的S与(金)成矿机制的思考值得特别关注。矿集区或矿田尺度的S同位素时空分布特征不仅具有理论意义,而且在实际的找矿勘查中也具有重要的指示作用[60]。因此本文以典型金矿集区S同位素组成特征为研究对象,通过梳理和总结揭示其S同位素组成特征的异同,分析产生差异的原因,进而引导研究者对S与金成矿机制进行更深入思考,试图获得更符合客观实际的认知,以指导金矿勘查,为金矿找矿实现更大突破提供理论和方法支撑。

1 中国金矿集区及典型金矿集区成矿地质环境

中国位于欧亚板块、太平洋板块和印度洋板块3大板块的交汇处,由多个大陆块、微陆块和褶皱带组成,主要有天山—兴安、塔里木—华北、昆仑—秦岭、川滇青藏和华南5大地质构造单元,经过38亿多年的地质构造演化,先后经历了前吕梁、吕梁、四堡、晋宁、震旦、加里东、华力西、印支、燕山、喜马拉雅等重大的构造—岩浆活动时期,具有复杂多样的地质构造,形成了独特的地球动力环境和成矿地质环境,创造了优良的金矿成矿地质条件,几乎可以在所有的地质时代、地质环境和各种类型的岩石中富集成矿[61]

中国作为一个产金大国,圈定矿集区是一项十分必要的任务,有助于掌握我国金矿时间和空间分布的特征。王斌等[61]在Ⅲ级成矿区带划分的基础上,重点考虑金矿类型、典型矿床的成矿地质条件及其时空分布特征、 区域成矿要素和资源量的动态变化,将我国金矿初步划分为42个金矿集区,而在这42个金矿集区中,又以胶东、小秦岭、滇黔桂3个金矿集区规模最大,最为重要,本文将重点介绍这3个典型金矿集区的成矿地质环境和硫同位素分布特征。

1.1 胶东金矿集区

胶东金矿集区地处山东半岛,面积约2.7万km2,已查明金资源量占全国的30%,是目前中国产量最大的黄金基地。近十来年,山东金矿找矿取得了历史性的突破,形成了以三山岛、焦家和玲珑为代表的3个千吨级金矿田,使胶东地区一跃成为全国第一、世界第三的金矿集区。据统计,资源储量超过50 t的岩金矿床可达23个[62],除上述3个金矿床外,还包括新城、台上、东风、九曲、大尹格庄、河西、金青顶等矿床。

区内岩浆活动强烈而频繁,以中酸性、酸性岩规模大、分布广。以中生代侵入岩最发育,可分为晚三叠世、晚侏罗世、早白垩世3期。晚三叠世如石岛杂岩体,主要为正长岩系列杂岩和高钾黑云母系列花岗岩[63],形成于205~225 Ma[64];晚侏罗世如玲珑岩体、昆嵛山岩体、鹊山岩体、垛固山岩体、文登岩体等,主要为黑云母花岗岩和二长花岗岩,形成于142~163 Ma[65-66];早白垩世如三山岛岩体、上庄岩体、北截岩体、丛家岩体、郭家岭岩体,主要为花岗闪长岩、二长花岗岩,形成于126~130 Ma[65]。岩体分布受近EW、NE和NNE向断裂控制。主要赋矿地质体可分为4类,其中侏罗纪玲珑花岗岩是胶东金矿床的主要赋矿地质体(赋矿围岩),白垩纪郭家岭花岗岩和新太古—古元古代变质岩系次之,少量金矿床赋存于早白垩世莱阳群底部(图1)。

图1

图1   胶东金矿集区区域地质及金矿床分布(据文献[62]修改)

1—第四系;2—新近系;3—白垩系;4—古元古界和新元古界;5—新元古代花岗质片麻岩;6—太古宙花岗岩-绿岩带;7—崂山花岗岩;8—伟德山花岗岩;9—郭家岭花岗岩;10—侏罗纪花岗岩类;11—三叠纪花岗岩类;12—断层;13—以往探明的浅部金矿床;14—新探明的深部金矿床

Fig.1   Regional geology and gold deposit distribution of Jiaodong gold district (modified from reference [62])

1—Quaternary; 2—Neogene; 3—Cretaceous; 4—Paleoproterozoic and Neoproterozoic; 5—Neoproterozoic granitic gneiss; 6—Archean granite-greenstone belt; 7—Laoshan granite; 8—Weideshan granite; 9—Guojialing granite; 10—Jurassic granitoid; 11—Triassic granitoid;12—faults; 13—previously explored shallow gold deposits;14—newly explored deep gold deposits


区内金矿成因类型以混合岩化热液金矿最为重要[2],按照含矿地质体特征和工业类型又可分为破碎带蚀变岩型和石英脉型两大类, 其成矿地质背景和物质来源基本相同,但含矿地质体的岩性、结构构造以及控矿构造性质差异很大。破碎带蚀变岩型金矿呈细粒和细脉浸染状赋存于胶东群斜长角闪岩等变质岩与玲珑片麻状混合花岗岩、 斑状黑云母花岗岩的内接触带和近接触带的含矿构造蚀变岩内破碎带中,含矿构造蚀变岩由黄铁绢英岩、黄铁绢英质糜棱岩—碎裂岩、黄铁绢英岩化花岗质碎裂岩和黄铁绢英岩化—绢英岩化花岗岩组成。 矿体呈脉状和透镜状产出, 矿体分布严格受NE向弧形韧性剪切断裂蚀变带控制[2,66-67],规模大,品位低,与围岩呈渐变关系。

1.2 小秦岭金矿集区

小秦岭矿集区位于陕西东部和河南西部,面积约1.4万km2(图2)。在原探明的文峪、杨砦峪大型金矿床之外,先后又新探明了大湖、灵湖等一大批大中型金矿。枪马、老鸦岔、东闯、文峪等老矿区的储量也不断增长,使得小秦岭地区成为中国最重要的黄金生产基地之一。更确切地说,小秦岭金矿集区是国内目前规模仅次于胶东的第二大金矿集区,目前已发现含金石英脉1 200余条,金矿床40多处,金储量超过630 t[69],因此受到国内外经济地质学家的特别关注。

图2

图2   小秦岭金矿集区区域地质及金矿床分布(据文献[68]修改)

Fig.2   Regional geology and gold deposit distribution of Xiaoqinling gold district (modified from reference [68])


区内地层主要为前寒武纪(太古宙—古元古代,或形成时代早于1 850 Ma)结晶基底太华群,主要岩性为斜长角闪岩、角闪片麻岩、黑云母斜长片麻岩、大理岩、石墨片麻岩、混合片麻岩及条带状混合岩等,原岩发育于3.0~2.2 Ga。发育多期岩浆活动,包括前寒武纪混合花岗岩、花岗岩和伟晶岩,燕山期辉绿岩和花岗岩等,其中以燕山期花岗岩最为发育,自西向东依次为华山、文峪和娘娘山黑云母(角闪)二长花岗岩[70]

矿区内主要金属矿物有黄铁矿、方铅矿、黄铜矿、自然金、银金矿,次为闪锌矿、磁铁矿、磁黄铁矿、黝铜矿、斑铜矿、辉铜矿及黑钨矿等。非金属矿物主要为石英,其次为铁白云石、菱铁矿、方解石、绢云母、绿泥石及钾长石等。金主要呈包体金、裂隙金及晶隙金赋存于黄铁矿、石英、铁白云石及其他硫化物中[71]

1.3 滇黔桂金矿集区

滇黔桂金矿集区位于桂西北、 黔西南与滇东南交接处的三角处,北起晴隆,南至富宁—田阳,西自罗平—丘北,东至红水河,面积约15万km2(图3)。 该区在20世纪70~80年代取得重大进展,近年来又有找矿重大突破。成型金矿有桂西北的金牙、高龙、明山、龙川、浪全,黔西南的水银洞、紫木凼、戈塘、板其、丫他、烂泥沟,滇东南的堂上等100余处,探获金资源量大于600 t [1],主要受断裂和褶皱控制。

图3

图3   滇黔桂金矿集区区域地质及金矿床分布(据文献[72]修改)

1—印支地块;2—华南地块;3—碳酸盐岩台地;4—浊积岩;5—晚古生代至三叠纪碳酸盐岩台地夹玄武岩;6—大断裂;7—区域断裂;8—晚白垩世超基性-基性岩脉;9—晚白垩世石英斑岩脉;10—晚白垩世花岗岩;11—二叠纪超基性-基性岩;12—金矿

Fig.3   Regional geology and gold deposit distribution of Yunnan-Guizhou-Guangxi gold district (modified from reference [72])

1—Indochina block; 2—South China block; 3—carbonate platform;4—turbidite; 5—carbonate platform from late Paleozoic to Triassic interspersed with basalt; 6—major faults; 7—regional faults; 8—late Cretaceous ultrabasic-basic dikes; 9—late Cretaceous quartz porphyry vein; 10—late Cretaceous granite; 11—Permian ultrabasic-basic rocks; 12—gold deposits


滇黔桂矿集区与传统的右江盆地基本吻合,西南边以红河断裂带与思茅—印支地块为邻;西边、西北边以弥勒—师宗—盘县断裂带与哀牢山变质带为界;东北边和东边以紫云—罗甸—南丹—都安断裂带为界与扬子陆块、江南造山带为邻;东南以凭祥—东门断裂带为界与钦州海槽分开;南边以那坡—富宁断裂、丘北断裂与越北地块相邻。

区内主要有3套不同的地层序列: 一是典型的深水盆地序列,包括深水碳酸盐岩、硅质岩、泥岩和沉凝灰岩,及其后发展起来的陆源碎屑浊积岩序列。这是右江盆地最主要的富金层序之一;二是右江盆地内的孤立碳酸盐岩台地序列,尽管其后也被浊流沉积所淹没,但推测其上的陆源碎屑岩沉积厚度不大;三是发育于黔西南的隶属于扬子陆块的宽广被动大陆边缘浅水碳酸盐岩沉积,也是重要的赋金层序之一[73]。具体含矿岩层有:①下泥盆统郁江组粉砂岩、泥岩(如坡岩、八渡金矿);②石炭系生物碎屑灰岩(如叫曼金矿);③上、下二叠统之间的“大厂层”(如戈塘、雄武金矿);④中、下三叠统黏土质岩、粉砂岩、细砂岩、泥岩等(如紫木凼、板其、金牙、高龙等金矿)。二叠系的黏土岩层和凝灰岩层可能是本区金矿的主要矿源层[74]

在地质发展演化过程中,区内发育了一系列不同级别的断裂和褶皱构造,其中EW 向和SN向隐伏构造带属早期形成的基底构造,它们持续活动,对晚期构造的形成、发展及成岩成矿都具有控制作用[75]。NE向、NW向及弧型构造如NE向的弥勒—师宗断裂、南盘江断裂、NW向的右江断裂、垭都—紫云断裂及南部明显发育的文山—富宁弧形断裂,是在老的构造基础上于印支—燕山期发展壮大起来的区域主干断裂构造,经历了压扭—剪—张的构造演化,为矿液运移和岩脉贯入提供了良好通道,控制着本区矿床的分布[76](图3)。一些深大断裂规模大,其分布在地球物理场上指示明显。由幔源岩浆岩(超基性及玄武岩)及幔源矿物沿深大断裂分布可推断,深大断裂延伸较深,可达上地幔,属超壳深大断裂[77]

构造对矿体具有分级控制的特征,区域性深断裂不仅控制了滇黔桂金三角区的边界及金矿带的分布,金矿体主要产于区域性深断裂的次级断裂中,受主要层间构造破碎带、压扭性断裂和密集裂隙带[78]及不同地层间不整合面控制。区内褶皱构造发育,分布有几十个穹隆,其产状与区域构造方向总体一致, 其核部主要为寒武系或泥盆系地层,而二叠系—三叠系多出现于翼部。在穹隆的核部及周边断裂构造发育,不仅有基性侵入岩出现,还控制着本区大部分金矿床的分布[78]。在滇黔桂卡林型金矿床中,黄铁矿是成矿热液作用的矿石矿物中的最主要的硫化物,其次还有毒砂、辉锑矿和雄黄,以及与此共生的脉石矿物石英和方解石[79]

2 典型金矿集区的硫同位素组成

黄铁矿是最主要的载金矿物,绝大部分金以自然金、金银矿或银金矿的形式赋存在黄铁矿颗粒中。由于金(Au)没有自己的同位素,因而用硫同位素示踪金的来源便成为了一种重要的技术手段。硫作为金矿最重要的组成部分之一,含硫络合物是金的重要运移方式之一[80],对硫同位素的高精度分析可以探究硫源区对矿床成因的指示意义[81]

2.1 胶东金矿集区的硫同位素组成

可以看出,胶东地区的大部分金矿的硫同位素特征表现为:正向偏离陨石硫,塔式效应明显,集中分布在7‰ ~ 9‰区间内(图4),来源为幔源与壳源的混合,幔源占主导地位。无论是赋矿地质体(胶东岩群、玲珑花岗岩、栾家河花岗岩、郭家岭花岗岩)还是金矿,δ34S均为正值,赋矿地质体和中基性脉岩的δ34S变化范围都较大,胶东岩群δ34S变化范围为0~7.80‰,平均值最小,为5.10‰,3类不同的中生代花岗岩δ34S变化范围相近,平均值也差别不大,玲珑花岗岩δ34S变化范围为3.90‰~14.90‰,平均值为8.20‰;栾家河花岗岩δ34S变化范围为3.90‰~14.00‰,平均值为7.50‰;郭家岭花岗岩δ34S变化范围为2.70‰~10.00‰,平均值为6.70‰。金矿中,新立金矿的δ34S变化范围最大(5.81‰~11.62‰),三山岛金矿次之(7.70‰~11.80‰),焦家金矿的δ34S变化范围最小(10.59‰~11.53‰),同时具有最大的δ34S平均值(11.00‰),玲珑金矿的δ34S平均值最小(6.52‰)。

图4

图4   胶东金矿集区赋矿地质体及部分金矿床硫同位素分布特征(数据引自文献[82-91])

Fig.4   Sulfur isotope distribution characteristics of ore-bearing geological bodies and representative gold deposits in Jiaodong gold district (data from reference [82-91])


2.2 小秦岭金矿集区的硫同位素组成

赋矿地质体(太华群、太古宙斜长片麻岩、太古宙斜长角闪岩)的δ34S变化范围都较小(图5),平均值都在0~5‰,太华群δ34S变化范围为1.30‰~5.70‰,平均值3.20‰;太古宙斜长片麻岩δ34S变化范围为-0.20‰~2.70‰,平均值1.70‰;太古宙斜长角闪岩δ34S变化范围为-3.90‰~3.60‰,平均值-1.20‰。在金矿中,金渠金矿具有最大的δ34S变化范围(-28.50‰~3.60‰),其次为金硐岔金矿(-12.47‰~8.27‰),文峪金矿则具有最小的δ34S变化范围(1.20‰~2.10‰),大部分金矿具有负的δ34S,只有崟鑫金矿(1.00‰~6.80‰)和文峪金矿的δ34S为正值。

图5

图5   小秦岭金矿集区赋矿地质体及代表性金矿硫同位素分布特征(数据引自文献[92-105])

Fig.5   Sulfur isotope distribution characteristics of ore-bearing geological bodies and representative gold deposits in Xiaoqinling gold district (data from reference [92-105])


2.3 滇黔桂金矿集区的硫同位素组成

除戈塘围岩外,其他的赋矿地质体均具有很小的δ34S变化范围(图6),金牙矿区的三叠系地层的δ34S变化范围为2.81‰~3.30‰,平均值为3.06‰,水银洞围岩的δ34S变化范围为3.70‰~6.80‰,平均值为4.75‰,烂泥沟金矿围岩的δ34S变化范围为10.40‰~13.20‰,平均值为11.90‰,且戈塘金矿围岩的δ34S均为负值(-21.20‰~-16.60‰),灰家堡矿田具有最小的δ34S值(-24.80‰~-1.83‰),水银洞金矿具有最大的δ34S变化范围(-3.00‰~67.50‰)和最大的δ34S平均值(58.10‰)。整体来看,整个矿集区的δ34S变化范围很大,可从-40‰左右变化至80‰左右。

图6

图6   滇黔桂金矿集区赋矿地质体及代表性金矿硫同位素分布特征(数据引自文献[106-116])

Fig.6   Sulfur isotope distribution characteristics of ore-bearing geological bodies and representative gold deposits in Yunnan-Guizhou-Guangxi gold district (data from reference [106-116])


3 对比与差异

3.1 大地构造背景

胶东和小秦岭金矿集区分别处于华北克拉通的东缘和南缘,而滇黔桂金矿集区则位于扬子克拉通的西南缘,三者具有不同的大地构造背景,并且华北克拉通和扬子克拉通在构造属性上也有着本质的差别。

3.2 赋矿地质体

胶东金矿集区的主要赋矿地质体为侏罗纪的玲珑型花岗岩,其次为白垩纪的郭家岭型花岗岩和新太古—古元古代的变质岩,少量金矿赋存于早白垩世的莱阳群[117]; 古元古代的太华群变质地层是小秦岭金矿集区的主要赋矿地质体[118]; 滇黔桂金矿集区的赋矿地质体主要为三叠系地层,区内金矿的赋矿层位众多,可从寒武系一直延续至白垩系[119]

3.3 成矿年代

胶东金矿集区的成矿年代为早白垩世的110~130 Ma,其中绝大多数金矿集中于120 Ma左右[117]; 小秦岭金矿集区的成矿年代分布于120~145 Ma之间,主要集中于127~130 Ma[120]; 滇黔桂金矿集区的成矿年代分布于96~237 Ma之间,年龄跨度范围较大[121]

3.4 矿化类型

胶东金矿集区的金矿类型主要为破碎带蚀变岩型和石英脉型,两种类型占据了金矿总量的94%,余下的为角砾岩型、蚀变砾岩型、层间滑动构造带型和黄铁矿碳酸盐脉型[62]; 小秦岭金矿集区主要为石英脉型,遍布于区内变质核杂岩中[122]; 滇黔桂金矿集区为卡林型金矿,根据矿体产状可进一步分为层控型和断控型[123]

3.5 硫同位素δ34S值

计算了胶东地区、小秦岭地区和滇黔桂地区金矿集区的总硫同位素δ34S和平均值,得出胶东地区的δ34S值范围为4.90‰~12.60‰,平均值7.40‰;小秦岭地区的δ34S范围为-7.10‰~7.10‰,平均值2.70‰[124];而滇黔桂地区的卡林型金矿δ34S范围为-12.80‰~18.1‰[115],具有很宽的S同位素值的变化范围。

4 讨论及相关问题提出

华北克拉通和扬子克拉通分属于不同的构造域,不同的构造属性使得它们具有不同的矿床类型和成矿系列。不同的构造域在成矿作用上的差异表现为不同构造域内部产出的金属矿床种类不同[125],华北克拉通内部主要产出的矿床类型为金矿和铜铅锌矿,扬子克拉通主要产出的矿床类型为铜铅锌矿和稀土矿[126]。就金矿而言,虽然扬子克拉通内部也有滇黔桂和湘中这样大型的金矿集区,但是无论是金矿的规模还是储量,都不及华北克拉通。换句话说,华北克拉通相对扬子克拉通更富集金矿,而扬子克拉通相对华北克拉通更富集铜铅锌矿和稀土矿。

在中生代,由于西太平洋板块向西俯冲,造成华北克拉通的破坏与岩石圈的减薄[127],使得华北克拉通发育出独特的成矿体系:①早—中侏罗世造山后成矿体系,以克拉通边缘的钼矿化为主;②白垩纪遍及全区的火山—侵入活动,主要分为2种类型:一是与中酸性岩浆活动有关的斑岩钼矿,主成矿时代为134~148 Ma;二是与地壳重熔和花岗岩侵位有关的大规模、爆发式金矿,主成矿时代为120±10 Ma[128]。而扬子板块在中生代则表现为大面积低温成矿的属性,尤其是西南缘是世界典型的低温成矿域,滇黔桂金矿集区的主成矿时期为燕山期,同时期的还发育汞、砷矿床[119]

4.1 δ34S的空间分布特征

可以看出,胶东地区的总硫同位素值δ34S变化范围更大,正向偏离陨石硫的程度更强,平均值更高,其区域内的不同规模金矿床的硫同位素δ34S值普遍高于小秦岭地区,暗示了其硫来源更具复杂性,成矿流体的氧化性更高。二者相同点在于金矿床的δ34S分别与本区与成矿有关岩体的δ34S较为接近,胶东地区玲珑花岗岩的δ34S值为3.90‰~14.90‰,小秦岭地区文峪花岗岩的δ34S值为2.10‰~4.30‰,这一特点反映了成矿流体中硫的来源与区域内下地壳的花岗岩化有关。同时,可以发现胶东地区金矿床的δ34S值随着远离海岸而降低。如滨海的三山岛金矿δ34S为11.40‰~12.90‰[129],向内陆方向的焦家金矿为11.00‰~11.50‰[83],新城金矿为7.20‰~9.70‰[130],而位于距海岸最远的夏甸金矿和大尹格庄金矿则分别减少为6.00‰~8.10‰[90]和6.30‰~7.60‰[86],这一现象和上述胶东金矿床δ34S普遍高于小秦岭的事实相吻合,使我们不得不考虑地理位置的影响。 注意到海水硫酸盐具有很高的δ34S值,如现代海水硫酸盐的δ34S为19.30‰~20.60‰(太平洋、大西洋、北冰洋),古海洋硫酸盐的δ34S为10‰~30‰[52],就不难解释海水对大气降水(地下水)参与成矿活动的影响。如前所述,中生代中国东部古陆地貌已基本形成,处于太平洋之滨的胶东半岛,其地下水无疑受到海水不同程度的混合,因此金矿床的δ34S值必然要高于地处内陆的小秦岭山区的。在胶东半岛内部,δ34S值也随着靠近海岸而升高。黄德业[131]从矿区地下水特征、矿床成矿元素比值等方面论证了海水硫、表生硫参与成矿作用的观点。

4.2 δ34S的时间分布特征

就胶东金矿集区而言,胶东岩群的主要岩性为黑云变粒岩、斜长角闪岩、角闪变粒岩夹磁铁石英岩和新太古代的变质杂岩[129],δ34S变化范围为0~7.80‰,平均值5.10‰,玲珑型花岗岩是胶东半岛出露面积最大的花岗岩,同时也是赋矿最多的花岗岩,其成因类型属于壳源重熔S型花岗岩,锆石SHRIMP U-Pb年龄集中于140~160 Ma[132-133],δ34S变化范围为3.90‰~14.90‰,平均值8.20‰,而郭家岭型花岗岩则是壳幔混合Ⅰ型花岗岩,锆石SHRIMP U-Pb年龄为126~130 Ma[134],δ34S变化范围为2.70‰~10.00‰,平均值6.70‰,栾家河型花岗岩的锆石SIMS U-Pb年龄为159~161 Ma[135],δ34S变化范围为3.90‰~14.00‰,平均值7.50‰。不难看出,同属于晚侏罗世的玲珑型花岗岩与栾家河型花岗岩有着几乎一样的δ34S变化范围(图5),早白垩世的郭家岭型花岗岩则略小于前两者,从大体的趋势上看,年龄越老的地质体,其δ34S值越趋近于0,在这里表现为胶东岩群这类前寒武纪地质体的δ34S值要远小于中生代花岗岩。胶东金矿集区的主成矿年龄集中于120 Ma左右,稍晚于上述中生代花岗岩,不同规模大小的金矿,其δ34S平均值都要大于中生代花岗岩,同时δ34S变化范围也更窄,显示出了很好的继承性。无独有偶,小秦岭金矿集区的主要赋矿地质体为古元古代(2.3~2.5 Ga)的太华群[118],主要由角闪斜长片麻岩、黑云母斜长片麻岩、角闪岩、混合岩、石英岩和大理岩组成,其δ34S变化范围为1.30‰~3.70‰,平均值3.20‰[136],而中生代的文峪花岗岩的δ34S变化范围为7.00‰~11.50‰,平均值8.70‰[92],同样表现出前寒武纪地质体的δ34S值明显大于中生代。

以上现象很好地说明了在地球演化的历史中,在大趋势上,越晚演化出的地质体,其δ34S越正向偏离地幔值(即陨石值),也就是说,从前寒武纪到显生宙的过程中,岩石是由超基性向中性,再向酸性演化的,地质体也是如此,δ34S的绝对值增加,变化范围也增大。

4.3 成矿物理化学条件对δ34S的影响

成矿流体的物理化学条件对δ34S的变化同样具有重要的影响。胶东金矿集区整体的成矿温度区间为200~350 ℃[91](流体包裹体均一温度),成矿流体为低盐度、中温型的H2O-CO2-NaCl±CH4体系,CO2高,CH4[137-140];小秦岭金矿集区整体的成矿温度区间为250~320 ℃(流体包裹体均一温度),成矿流体为低盐度、中温型的CO2-H2O-NaCl体系[141];滇黔桂金矿集区整体的成矿温度区间较大,为80~295 ℃(流体包裹体均一温度),成矿流体为H2O + CO2 + CH4 ± N2体系,具有中低温、低盐度特征[142]。胶东地区的δ34S变化范围约为4.90‰~12.60‰,小秦岭地区的δ34S变化范围约为-7.10‰~7.10‰,滇黔桂地区的δ34S变化范围约为-12.80‰~18.10‰,不难看出,三者之间滇黔桂地区的成矿温度变化最大,同时也对应了最大的δ34S变化范围。因此可以认为,成矿温度的波动与硫同位素组成密切相关,温度波动越大,δ34S变化范围也就越大,反之则反。

4.4 S在金矿中主要的赋存状态

通过对比可以发现,胶东金矿集区的硫化物主要为黄铁矿(FeS2),只发育少量的方铅矿(PbS)、闪锌矿(ZnS)以及极少量的黄铜矿(CuFeS2),小秦岭金矿集区的硫化物中,黄铁矿同样占主要,却存在相当含量的方铅矿、闪锌矿、黄铜矿以及含硫碲化物,而地处扬子克拉通西南的滇黔桂金矿集区中则发育更多种类的硫化物,除占据主要地位的黄铁矿和毒砂(FeAsS)之外,雄黄(As4S4)、辉锑矿(Sb2S3)、砷黄铁矿、方铅矿、闪锌矿、辰砂(HgS)、磁黄铁矿(FeS)、辉钼矿(MoS2)等也在矿床中经常出现,这一点在前人对这3个金矿集区的硫同位素调查上有所体现。矿物的组合能够反映成矿流体的物理化学形态,进而反映矿床中S的相态。不难看出,3个矿集区中的S有着不同的存在形态,胶东金矿集区中的S主要以黄铁矿这类硫化物为主,S以-1价态为主,小秦岭金矿集区中的S不仅以黄铁矿这类-1价态的矿物为主要的存在形式,方铅矿(PbS)、闪锌矿(ZnS)和黄铜矿(CuFeS2)这类-2价态的矿物也有着不少的含量。在滇黔桂金矿集区中,S的物相形式更是多种多样,有-1价的黄铁矿,-2价的毒砂(FeAsS)、雄黄(As4S4)、辉钼矿(MoS2)、辉锑矿(Sb2S3)、磁黄铁矿(FeS)等。不同于胶东和小秦岭,滇黔桂金矿集区中的载金黄铁矿更加富砷,毒砂的存在也暗示了这一点。S在硫化物中的价态不仅影响着载金能力,也影响着金的赋存形态,相对来说,-1价的黄铁矿(FeS2)的载金能力大于-2价的磁黄铁矿(FeS)。卢焕章等[143]对产于滇黔桂微细浸染型金矿床中含金毒砂和黄铁矿中“不可见金”的赋存状态进行了深入研究,论证了金在毒砂和黄铁矿晶格中占据[AsS]3-的S的位置,以对阴离子[AsAu]2-的形式显负价态。

不同来源的S,同位素组成特性不同,在来源上可分为4类:①地幔硫(岩浆硫),S同位素平均组成接近陨石,变化范围为0±3‰; ②地壳硫(沉积硫),S同位素变化范围大,以负值为特征; ③海水硫,一般认为海相蒸发盐岩的δ34S可以代表海水的硫同位素组成,约为+20‰; ④混合硫,来源复杂,是以上2种或3种来源的混合,δ34S值介于地幔硫和海水硫之间,约为5‰~15‰[16,18]

不同的地质背景条件下形成的金矿床中S的来源不同,滇黔桂金矿集区中的金矿属于扬子克拉通西南缘的低温成矿域[123],成矿流体不同于胶东和小秦岭地区的高温的岩浆热液。Lin等[115]对滇黔桂金矿集区的卡林型金矿中不同阶段的黄铁矿和毒砂进行了原位的S同位素分析,结果表明泥堡、板其、丫他、高龙、金牙5个金矿的δ34S值位于0.05‰~11.51‰,具有上述明显的混合硫特征,高龙金矿和泥堡金矿中沉积成岩阶段的黄铁矿的δ34S值分别为-6.41‰和-15.61‰,同样符合沉积硫的特征,认为S和Au的来源为深层的元古宙变质基底,并且于沉积源有大量混合,成矿流体的动力主要来源于燕山期造山运动,流体与深循环的大气水及盆地流体混合,与浅层地壳围岩反应形成金矿。在硫同位素分布特征图中也可以看出(图6),滇黔桂金矿集区的金矿硫同位素值分布范围相较于胶东和小秦岭都要更宽,δ34S值更加变化多样,金矿的负值δ34S更多,这就是滇黔桂金矿集区更多地混染了沉积硫和海水硫,混合硫的来源更为复杂的结果。

4.5 δ34S对找矿的意义

前人对于矿床学中δ34S的研究主要集中在基础理论方面,而在实际的找矿应用之中探索不多。朱乔乔等[60]对湖北金山店矽卡岩型铁矿田中的硫同位素开展了系统的填图研究工作,发现不同类型铁矿的赋矿地层和热液石膏的硫同位素组成均存在明显差异,暗示成矿围岩存在显著差异,认为在天青石矿区附近可能具有寻找大冶式矽卡岩型铁矿的潜力,而在硬石膏/石膏发育的矿区附近则可能具有寻找狮子山式天青石矿的潜力,并进一步得出结论,矿集区或矿田尺度的硫同位素(δ34S)填图不仅具有重要的理论意义,而且对找矿实践也具有重要的指示作用。

不仅如此,硫同位素对于界定地质体成矿边界也具有重要作用。赋矿地质体具有时间和空间上的边界,显然,界定赋矿地质体成矿边界对指明找矿方向、指导深部矿产勘查均具有重要的实用价值。利用钻孔岩石测量结果,依据富硫地质体的空间展布特征、元素负异常特性及其强度变化,配合硫同位素组成、稀土元素配分模式等地球化学标志,可以界定赋矿地质体边界,为深部找矿提供直接证据。马生明等[11]对安徽马头斑岩型钼铜床进行了相关研究,得到如下结果:矿床中硫同位素变化范围较窄(-6.60‰~3.20‰),粉砂岩的δ34S值为-6.60‰和-1.50‰,花岗闪长斑岩的δ34S值为3.00‰、3.10‰和3.20‰。尽管矿区中不同岩性赋矿地质体的δ34S值存在差异,但是均偏离0值不大,却与外围花岗岩的δ34S值差异显著(表1),暗示马头斑岩型钼铜矿赋存在独立的赋矿地质体中。结合Na2O带出量异常分析(图7),可以看出在Na2O带出量大于10×10-3的异常内、外,花岗闪长斑岩的硫同位素组成基本一致,表明整个花岗闪长斑岩中的S具有一致的来源。由此推测,在Na2O带出量小于6×10-3的地段Mo、Cu矿化虽然已经消失,但是热液作用并未终结,表明热液成矿边界并不是一个截然的界线,而是一种渐变的过渡。

表1   马头矿区的硫同位素组成[11]

Table 1  Sulfur isotope composition of Matou ore district[11]

样品号岩性测试矿物采样位置
Na2O带出
量/10-3
δ34S/‰
ZK901-1-1粉砂岩黄铁矿> 10-1.5
ZK902-2-1粉砂岩黄铁矿> 10-6.6
ZK902-4-1花岗闪长斑岩黄铁矿> 203.0
ZK902-5-1花岗闪长斑岩黄铁矿< 63.1
ZK902-6-1花岗闪长斑岩黄铁矿< 63.2
SC02-4花岗岩黄铁矿12.6
GC01-2花岗岩黄铁矿12.7

新窗口打开| 下载CSV


图7

图7   马头矿区9号勘探线剖面Na2O带出量异常(据文献[11]修改)

1—第四系;2—中志留统坟头组粉砂岩;3—花岗闪长斑岩;4—地层界线;5—蚀变带界线;6—Mo矿体(333);7—Mo矿体(332);8—Cu矿体;9—钻孔及钻孔标高;10—Na2O带出量大于20×10-3;11—Na2O带出量大于10×10-3;12—Na2O带出量小于6×10-3;13—硫同位素采样点

Fig.7   Depletion of Na2O in No.9 cross profile in Matou ore district (modified from reference [11])

1—Quaternary; 2—Fentou Formation siltstone of Middle Silurian Series; 3—granodiorite porphyry; 4—stratigraphic boundary; 5—alteration zone boundary; 6—Mo ore (333); 7—Mo ore (332); 8—Cu ore; 9—drilling holes and elevation; 10—Na2O carry-out is greater than 20×10-3; 11—Na2O carry-out is greater than 10×10-3; 12—Na2O carry-out is less than 6×10-3; 13—sulfur isotope sampling


通过上述案例,可以得出以下结论:① 利用钻孔岩石测量,将硫同位素组成与元素负异常、稀土元素配分等特征有机地结合起来,能够有效确定矿床尺度热液成矿的边界。② 在成矿边界内、外,硫同位素分馏特征存在显著差异,这种差异反映了成矿边界内、外地质条件的差异,可以作为识别热液型矿床边界的地球化学依据。

5 结论

1)胶东、小秦岭和滇黔桂3个金矿集区的硫同位素组成不同,胶东金矿硫同位素主要集中在4.90‰~12.60‰,小秦岭金矿主要集中在-7.10‰~7.10‰,滇黔桂金矿主要集中在-12.80‰~18.10‰,根本原因在于它们的大地构造背景、赋矿地质体、成矿年代和矿化类型的不同。

2)δ34S的空间分布特征表现为胶东金矿集区靠近海岸的金矿的δ34S值要显著高于内陆,时间分布特征表现为前寒武纪的地质体的δ34S值明显大于中生代,在大趋势上,越晚演化出的地质体,其δ34S越正向偏离地幔值(即陨石值)。

3)成矿物理化学条件对δ34S有重要影响,成矿温度波动越大,δ34S的变化范围越大。

4)矿集区或矿田尺度的硫同位素(δ34S)填图不仅具有重要的理论意义,而且对找矿实践也具有重要的指示作用,将硫同位素组成与元素负异常、稀土元素配分结合,能够确定矿床尺度热液成矿的边界,可以作为识别热液型矿床边界的地球化学依据。

参考文献

王成辉, 王登红, 黄凡, .

中国金矿集区及其资源潜力探讨

[J]. 中国地质, 2012, 39(5):1125-1142.

[本文引用: 2]

Wang C H, Wang D H, Huang F, et al.

The major gold concentration areas in China and their resource potentials

[J]. Geology in China, 2012, 39(5):1125-1142.

[本文引用: 2]

陈毓川, 李兆鼎, 毋瑞身, . 中国金矿床及其成矿规律[M]. 北京: 地质出版社, 2001.

[本文引用: 3]

Chen Y C, Li Z D, Wu R S, et al. Gold deposits and metallogeny in China[M]. Beijing: Geological Publishing House, 2001.

[本文引用: 3]

王成辉, 徐珏, 黄凡, .

中国金矿资源特征及成矿规律概要

[J]. 地质学报, 2014, 88(12):2315-2325.

[本文引用: 1]

Wang C H, Xu J, Huang F, et al.

Resources characteristics and outline of regional metallogeny of gold deposits in China

[J]. Acta Geologica Sinica, 2014, 88(12):2315-2325.

[本文引用: 1]

Reich M, Deditius A, Chryssoulis S, et al.

Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study

[J]. Geochimica et Cosmochimica Acta, 2013, 104:42-62.

DOI:10.1016/j.gca.2012.11.006      URL     [本文引用: 1]

高振敏, 杨竹森, 李红阳, .

黄铁矿载金的原因和特征

[J]. 高校地质学报, 2000(2):156-162.

[本文引用: 1]

对102个金矿床载金矿物的统计表明,黄铁矿是最普遍最重要的载金矿物。造成黄铁矿成为主要载金矿物的原因,有三个矿物学方面的因素,即结构因素、成核因素和电化学因素。结构因素表现在黄铁矿晶体结构中存在对硫 [S2]2-,对硫 形成过程中对金离子具还原效应。成核因素表现在自然金成核常选择原子排布与之最接近的黄铁矿表面为衬底,以降低成核能。电化学因素表现在黄铁矿的热电性导致金离子在其表面发生电化学反应而沉淀结晶。对黄铁矿载金能力的分析表明,细粒、它形、裂隙发育程度高、As和Sb含量高以及P型的黄铁矿载金能力高,自形黄铁矿中的{210}、S面{100}及其聚形晶的载金能力高。

Gao Z M, Yang Z S, Li H Y, et al.

Genesis and characteristics of gold hosted by pyrite

[J]. Geological Journal of China Universities, 2000(2):156-162.

[本文引用: 1]

Seo J H, Guillong M, Heinrich C A.

The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits

[J]. Earth and Planetary Science Letters, 2009, 282(1-4):323-328.

DOI:10.1016/j.epsl.2009.03.036      URL     [本文引用: 1]

Hedenquist J W, Simmons S F, Giggenbach W F, et al.

White Island,New Zealand,volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition

[J]. Geology, 2003, 21:731-734.

DOI:10.1130/0091-7613(1993)021&lt;0731:WINZVH&gt;2.3.CO;2      URL     [本文引用: 1]

Gustafson L B, Hunt J P.

The porphyry copper deposit at El Salvador,Chile

[J]. Economic Geology, 2005, 70:857-912.

DOI:10.2113/gsecongeo.70.5.857      URL     [本文引用: 1]

马生明, 朱立新, 苏磊, .

矿化剂元素硫(S)与成矿

[J]. 地质学报, 2016, 90(9):2427-2436.

[本文引用: 1]

Ma S M, Zhu L X, Su L, et al.

Mineralizing agent sulfur and metallogenic process

[J]. Acta Geologica Sinica, 2016, 90(9):2427-2436.

[本文引用: 1]

马生明, 朱立新, 张亮亮, .

关于胶西北金矿成矿地球化学机制的思考

[J]. 物探与化探, 2019, 43(5):925-931.

[本文引用: 1]

Ma S M, Zhu L X, Zhang L L, et al.

Thoughts on the geochemical mechanism of gold mineralization in the northwest Jiaodong gold province

[J]. Geophysical and Geochemical Exploration, 2019, 43(5):925-931.

[本文引用: 1]

马生明, 朱立新, 席明杰, . 多维异常体系及其形成机理—矿产地球化学勘查基本准则[M]. 北京: 地质出版社, 2022.

[本文引用: 6]

Ma S M, Zhu L X, Xi M J, et al. Multidimensional anomaly system and its formation mechanism-Basic criteria for mineral geochemical exploration[M]. Beijing: Geological Publishing House, 2022.

[本文引用: 6]

张东, 朱立新, 苏磊, .

青海五龙沟金矿多属性地球化学异常研究

[J]. 地质学报, 2016, 90(10):2874-2886.

[本文引用: 1]

Zhang D, Zhu L X, Su L, et al.

Study on Multiple attributes geochemical abnormal in Wulonggou gold deposit,Qinghai Province

[J]. Acta Geologica Sinica, 2016, 90(10):2874-2886.

[本文引用: 1]

刘英俊, 曹励明, 李兆麟, . 元素地球化学[M]. 北京: 科学出版社,1984.

[本文引用: 1]

Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press,1984.

[本文引用: 1]

陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004.

[本文引用: 1]

Chen J, Wang H N. Geochemistry[M]. Beijing: Science Press, 2004.

[本文引用: 1]

Ohmoto H, Rye R O. Isotopes of sulfur and carbon[G]//Geochemistry of Hydrothermal Ore Deposits,Second Edeition. New York: John Wily and Sons,1979.

[本文引用: 1]

陕亮, 郑有业, 许荣科, .

硫同位素示踪与热液成矿作用研究

[J]. 地质与资源, 2009, 18(3):197-203.

[本文引用: 3]

Shan L, Zheng Y Y, Xu R K, et al.

Review on sulfur isotopic tracing and hydrothermal metallogenesis

[J]. Geology and Resources, 2009, 18(3):197-203.

[本文引用: 3]

Jochen H. Stable Isotope Geochemistry[M]. Gewerbestrasse: Springer International Publishing House, 2018.

[本文引用: 1]

杜思敏.

硫同位素在示踪金属矿床成矿物质来源中的应用

[J]. 化工矿产地质, 2019, 41(3):196-202.

[本文引用: 2]

Du S M.

Application of sulphur isotope in tracing ore-forming material sources of metal deposits

[J]. Geology of Chemical Minerals, 2019, 41(3):196-202.

[本文引用: 2]

Doran A L, Hollis S P, Menuge J F, et al.

A distal,high-grade irish-type orebody:Petrographic,sulfur isotope,and sulfide of the Island Pod Zn-Pb Lisheen,Ireland

[J]. Economic Geology, 2022, 117(2):305-326.

DOI:10.5382/econgeo.4882      URL     [本文引用: 1]

Irish-type Zn-Pb deposits are important global sources of zinc, but despite a fundamental understanding of ore genesis within the Irish orefield, a detailed understanding of fluid migration and chemical evolution pathways related to sulfide and carbonate precipitation is lacking. We present the first petrographic, paragenetically constrained sulfur isotope and mineral chemistry study of mineralization at the Island Pod orebody, Lisheen deposit. The Island Pod orebody comprises high-grade mineralization that is less deformed than elsewhere in the Irish orefield. Consequently, studies of the Island Pod orebody and its mineralization provide information on the evolving nature of hydrothermal fluids involved in ore deposition.

Ding T, Tan T T, Wang J, et al.

Multiple sources for the Baoshan polymetallic Cu-Mo-Pb-Zn deposit,southern Hunan Province,China:Insights from in situ LA-MC-ICP-MS sulfur isotopic compositions

[J]. Ore Geology Reviews, 2022, 143:104808.

DOI:10.1016/j.oregeorev.2022.104808      URL     [本文引用: 1]

Brusnitsyn A I, Sadykov S A, Perova E N, et al.

Genesis of Barite-Galena Ores at the Ushkatyn-III Deposit,Central Kazakhstan:Analysis of geological,mineralogical,and isotopic (delta S-34,delta C-13,delta O-18) data

[J]. Geology of Ore Deposits, 2022, 64(3):78-103.

DOI:10.1134/S1075701522030023      [本文引用: 1]

Mathieu J, Turner E C, Kontak D J, et al.

Geochemical evidence for a topographically driven regional mineralizing fluid

[J]. Economic Geology, 2022, 117(7):1451-1480.

DOI:10.5382/econgeo.4959      URL     [本文引用: 1]

The Polaris district in Canada’s Arctic Archipelago contains numerous carbonate rock-hosted Zn + Pb showings and rare, anomalous Cu showings in a 450- × 130-km area. As in many metallogenic districts, a genetic relationship between the mined deposit and surrounding showings has been assumed but not tested. This study uses an in situ, multianalytical approach combining optical and scanning electron microscopy petrography, fluid inclusion microthermometry, evaporate mound analysis, trace element analysis, and in situ stable isotope analysis on sphalerite and carbonate gangue to characterize the fluid histories of individual showings and the district as a whole. Results indicate that a regional, marine-derived fluid dissolved subsurface evaporite minerals, interacted with their connate brines, and transported metals and sulfate to sites of mineralization. Initial fluid mixing with local reduced sulfur accumulations resulted in precipitation of sulfides with lower δ34S values; after exhaustion of the local reduced sulfur pool, thermochemical sulfate reduction (TSR) of transported sulfate became dominant, resulting in higher δ34S. Differences in main-stage δ34S values among different showings indicate a variable extent of TSR among sites. The mineralized volume of each showing is predominantly a function of local fluid flux and availability of a local reductant. The nature and consistency of geochemical characteristics throughout the district confirm the genetic relationship between the large deposit (Polaris) and surrounding showings and indicate that a uniform mineralizing fluid, topographically mobilized during the mid-Paleozoic Ellesmerian orogeny, was responsible for the main, district-wide mineralization, after initially mixing at a smaller scale with local, on-site fluids.

Zhao Q Q, Zhai D G, Williams-Jones A E, et al.

Trace element and isotopic (S,Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit,NE China

[J]. American Mineralogist, 2023, 108(1):160-177.

DOI:10.2138/am-2022-8142      URL     [本文引用: 1]

Porphyry-type Mo deposits have supplied most of the Mo to the world. However, the source of the Mo and the controls on its enrichment in such deposits is still a matter of great debate. In this study, we present in situ trace element and isotopic data for a giant porphyry Mo deposit (the Chalukou Mo deposit in NE China) and use these data to address these issues. Three primary paragenetic stages of mineralization were recognized at Chalukou: (Stage I) K-feldspar + quartz + minor pyrite (Py-I) + minor molybdenite (Mol-I); (Stage II) quartz + sericite + molybdenite (Mol-II) + pyrite (Py-II); (Stage III) quartz + chlorite + epidote + fluorite + pyrite (Py-III) + galena + sphalerite + minor chalcopyrite. The bulk of the molybdenite was deposited in Stage II. In situ S isotope analyses of the sulfide ores show that the δ34S values vary from –5.2 to +7.8‰ (mean = +2.9‰) and correspond to δ34SH2S values from –2.4 to +3.3‰ (mean = +1.1‰). These values are consistent with a magmatic source for the sulfur. In situ Pb isotope compositions of the sulfide ores are almost identical to those of the local Mesozoic granites and other magmatic-hydrothermal ore deposits in this region, suggesting a close genetic association between the Mo mineralization and felsic magmatism.

Thode H G, Monster J, Dunford H B.

Sulphur isotope geochemistry

[J]. Geochimica et Cosmochimica Acta, 1961, 25(3):159-174.

DOI:10.1016/0016-7037(61)90074-6      URL     [本文引用: 1]

Glesemann A, Jaeger H J, Norman A L, et al.

Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer

[J]. Analytical Chemistry, 1994, 66(18):2816-2819.

DOI:10.1021/ac00090a005      URL     [本文引用: 1]

Crowe D E, Valley J W, Baker K L.

Micro-analysis of sulfur isotope ratios and zonation by laser microprobe

[J]. Geochimica et Cosmochimica Acta, 1990, 54(7):2075-2092.

DOI:10.1016/0016-7037(90)90272-M      URL     [本文引用: 1]

Bendall C, Lahaye Y, Fiebig J, et al.

In situ sulfur isotope analysis by laser ablation MC-ICP-MS

[J]. Applied Geochemistry, 2006, 21(5):782-787.

DOI:10.1016/j.apgeochem.2006.02.012      URL     [本文引用: 1]

Craddock P R, Rouxel O J, Ball L A, et al.

Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS

[J]. Chemical Geology, 2008, 253(3/4):102-113.

DOI:10.1016/j.chemgeo.2008.04.017      URL     [本文引用: 1]

Kozdon R, Kita N T, Huberty J M, et al.

In situ sulfur isotope analysis of sulfide minerals by SIMS:Precision and accuracy,with application to thermometry of -3.5Ga Pilbara cherts

[J]. Chemical Geology, 2010, 275(3/4):243-253.

DOI:10.1016/j.chemgeo.2010.05.015      URL     [本文引用: 1]

Bühn B, Santos R V, Dardenne M A, et al.

Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS

[J]. Chemical Geology, 2012,312-313:163-176.

[本文引用: 1]

Seal R R.

Sulfur isotope geochemistry of sulfide minerals

[J]. Reviews in Mineralogy & Geochemistry, 2006, 61:633-677.

[本文引用: 1]

杨宝菊, 曾志刚, 陈帅, .

激光探针硫同位素分析方法及应用

[J]. 海洋科学, 2015, 39(7):124-129.

[本文引用: 1]

Yang B J, Zeng Z G, Chen S, et al.

The laser microprobe sulfur isotope measurement and applications

[J]. Marine Sciences, 2015, 39(7):124-129.

[本文引用: 1]

Xue Y X, Campbell I, Ireland T R, et al.

No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits

[J]. Geology, 2013, 41(7):791-794.

DOI:10.1130/G34186.1      URL     [本文引用: 1]

Tanner D, Henley R W, Mavrogenes J A, et al.

Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit,Chile

[J]. Contributions to Mineralogy and Petrology, 2016, 171(4):1-17.

DOI:10.1007/s00410-015-1217-5      URL     [本文引用: 1]

Yan J, Hu R Z, Liu S, et al.

NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China:New insights into the origin and evolution of Au-bearing fluids

[J]. Ore Geology Reviews, 2018, 92:29-41.

DOI:10.1016/j.oregeorev.2017.10.015      URL     [本文引用: 1]

范宏瑞, 李兴辉, 左亚彬, .

LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程

[J]. 岩石学报, 2018, 34(12):3479-3496.

[本文引用: 1]

Fan H R, Li X H, Zuo Y B, et al.

In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit

[J]. Acta Petrologica Sinica, 2018, 34(12):3479-3496.

[本文引用: 1]

Chaussidon M, Lorand J P.

Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees,France):An ion microprobe study

[J]. Geochimica et Cosmochimica Acta, 1990, 54(10):2835-2846.

DOI:10.1016/0016-7037(90)90018-G      URL     [本文引用: 1]

郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

[本文引用: 1]

Zheng Y F, Chen J F. Stable isotope geochemistry[M]. Beijing: Science Press, 2000.

[本文引用: 1]

Taylor B E.

Magmatic volatiles-isotopic variation of C,H,and S

[J]. Reviews in Mineralogy, 1986, 16:185-225.

[本文引用: 1]

Wallace P, Carmichael I S E.

Sulfur in basaltic magmas

[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1863-1874.

DOI:10.1016/0016-7037(92)90316-B      URL     [本文引用: 1]

Rye R O.

The evolution of magmatic fluids in the epithermal environment-the stable isotope perspective

[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1993, 88(3):733-753.

DOI:10.2113/gsecongeo.88.3.733      URL     [本文引用: 1]

Strauss H.

The isotopic composition of sedimentary sulfur through time

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1-4):97-118.

DOI:10.1016/S0031-0182(97)00067-9      URL     [本文引用: 1]

Shen Y A, Buick R, Canfield D E.

Isotopic evidence for microbial sulphate reduction in the early Archaean era

[J]. Nature, 2001, 410(6824):77-81.

DOI:10.1038/35065071      URL     [本文引用: 1]

Farquhar J, Wing B A.

Multiple sulfur isotopes and the evolution of the atmosphere

[J]. Earth and Planetary Science Letters, 2003, 213(1-2):1-13.

DOI:10.1016/S0012-821X(03)00296-6      URL     [本文引用: 1]

Bottrell S H, Newton R J.

Reconstruction of changes in global sulfur cycling from marine sulfate isotopes

[J]. Earth-Science Reviews, 2006, 75(1-4):59-83.

DOI:10.1016/j.earscirev.2005.10.004      URL     [本文引用: 1]

Ohmoto H.

Systematics of sulfur and carbon isotopes in hydrothermal ore deposits

[J]. Economic Geology, 1972, 67:551-578.

DOI:10.2113/gsecongeo.67.5.551      URL     [本文引用: 1]

Kerrich R, Goldfarb R, Groves D I, et al.

The characteristics,origins,and geodynamic settings of supergiant gold metallogenic provinces

[J]. Science in China Series D:Earth sciences, 2000, 43(S1):1-68.

[本文引用: 1]

Deng J, Wang Q.

Gold mineralization in China:Metallogenic provinces,deposit types and tectonic framework

[J]. Gondwana Research, 2016, 36:219-274.

DOI:10.1016/j.gr.2015.10.003      URL     [本文引用: 1]

Wang C M, Bagas L, Deng J, et al.

Crustal architecture and its controls on mineralisation in the North China Craton

[J]. Ore Geology Reviews, 2018, 98:109-125.

DOI:10.1016/j.oregeorev.2018.05.016      URL     [本文引用: 1]

Deng J, Yang L Q, Li R H, et al.

Regional structural control on the distribution of world-class gold deposits:An overview from the Giant Jiaodong Gold Province,China

[J]. Geological Journal, 2019, 54(1):378-391.

DOI:10.1002/gj.3186      [本文引用: 1]

The Jiaodong gold province in northeastern China is the country's premier gold resource and globally one of the most important gold provinces. The late Early Cretaceous gold metallogeny in this belt remains an enigma as it is hosted in the Archean Jiaobei Terrane of the North China Block and, to a lesser extent, within the Palaeoproterozoic Sulu Terrane of the South China Block. The driving force for widespread Late Jurassic and Early Cretaceous granitic magmatism, the switchover from a compressional to extensional tectonic regime, and gold mineralization are considered to be a combination of plate subduction with lithospheric delamination and consequent asthenospheric upwelling. Although many aspects related to the genesis of the gold deposits in Jiaodong have been resolved, the spatial distribution of the world-class gold deposits in this belt, which is of vital importance to brownfields and greenfields exploration, has been poorly understood in terms of the structural evolution of the province. In the northwestern segment of the Jiaobei Terrane, the world-class gold deposits of Sanshandao in the west, through Jiaojia, to Linglong in the east define a broadly E-W corridor. This corridor links a series of east-verging jogs on ore-controlling NNE-trending oblique-slip faults that are subparallel to an lithospheric-scale Tan-Lu Fault to the west. There is cryptic evidence that these jogs line up in the E-W trend due to reactivation of Palaeoproterozoic to Mesozoic faults and folds that were part of the structural architecture of the terranes prior to the gold event. These jogs induced deviations in the local principal stresses relative to regional equivalent stresses, with resultant heterogeneous strain, increased rock permeability, and focussed ore-fluid ingress. Both disseminated/microbreccia-stockwork and vein-type gold deposits formed in this corridor, with the former being predominant and the latter having a higher gold grade. In contrast, predominant vein-type gold deposits in the eastern segment of the Jiaobei and Sulu terranes tend to form N-S corridors. These vein-type ores may relate to rotational strain induced by movement on pairs of more linear NNE-trending faults with the same kinematic movement sense.

Wang Q F, Yang L, Zhao H S, et al.

Towards a universal model for orogenic gold systems:A perspective based on Chinese examples with geodynamic,temporal,and deposit-scale structural and geochemical diversity

[J]. Earth-Science Reviews, 2022, 224:103861.

DOI:10.1016/j.earscirev.2021.103861      URL     [本文引用: 1]

Chang Z S, Large R R, Maslennikov V.

Sulfur isotopes in sediment-hosted orogenic gold deposits:Evidence for an early timing and a seawater sulfur source

[J]. Geology, 2008, 36(12):971-974.

DOI:10.1130/G25001A.1      URL     [本文引用: 2]

Lin S R, Hu K, Cao J, et al.

An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin,southwest China

[J]. Ore Geology Reviews, 2021, 134:104187.

DOI:10.1016/j.oregeorev.2021.104187      URL     [本文引用: 1]

Barker S L L, Hickey K A, Cline J S, et al.

Uncloaking invisible gold:Use of NanoSIMS to evaluate gold,trace elements,and sulfur isotopes in pyrite from Carlin-type gold deposits

[J]. Economic Geology, 2009, 104(7):897-904.

DOI:10.2113/econgeo.104.7.897      URL     [本文引用: 1]

Chen M H, Zhang Z Q, Santosh M, et al.

The Carlin-type gold deposits of the “golden triangle” of SW China:Pb and S isotopic constraints for the ore genesis

[J]. Journal of Asian Earth Sciences, 2015, 103:115-128.

DOI:10.1016/j.jseaes.2014.08.022      URL     [本文引用: 1]

Li X H, Fan H R, Zhu R X, et al.

In-situ monazite Nd and pyrite S isotopes as fingerprints for the source of ore-forming fluids in the Jiaodong gold province

[J]. Ore Geology Reviews, 2022, 147:104965.

DOI:10.1016/j.oregeorev.2022.104965      URL     [本文引用: 1]

Kakegawa T.

Sulfur isotope evidence for the origin of 3.4 to 3.1 Ga pyrite at the Princeton gold mine,Barberton Greenstone Belt,South Africa

[J]. Precambrian Research, 1999, 96(3/4):209-224.

DOI:10.1016/S0301-9268(99)00006-6      URL     [本文引用: 1]

Selvaraja V, Fiorentini M L, Jeon H, et al.

Evidence of local sourcing of sulfur and gold in an Archaean sediment-hosted gold deposit

[J]. Ore Geology Reviews, 2017, 89:909-930.

DOI:10.1016/j.oregeorev.2017.07.021      URL     [本文引用: 1]

LaFlamme C, Sugiono D, Thébaud N, et al.

Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

[J]. Geochimica et Cosmochimica Acta, 2018, 222:436-446.

DOI:10.1016/j.gca.2017.11.003      URL     [本文引用: 1]

朱乔乔, 谢桂青.

湖北金山店矽卡岩型铁矿田硫同位素特征及其地质意义

[J]. 岩石学报, 2018, 34(9):2518-2534.

[本文引用: 2]

Zhu Q Q, Xie G Q.

Sulfur isotopic character and geological implications for the Jinshandian Fe skarn ore field,Hubei Province

[J]. Acta Petrologica Sinica, 2018, 34(9):2518-2534.

[本文引用: 2]

王斌, 李景朝, 王成锡, .

中国金矿资源特征及勘查方向概述

[J]. 高校地质学报, 2020, 26(2):121-131.

DOI:10.16108/j.issn1006-7493.2019033      [本文引用: 2]

基于金矿成矿地球动力学环境以及矿床基本地质特征等,将中国金矿床类型归纳为11 类,其中以构造破碎带蚀变岩型、中深成侵入岩体内及其外接触带型、卡林&mdash;似卡林型、浅变质碎屑岩中热液型、陆相火山岩型等为主要找矿类型;成矿年代以中生代、新生代为主。在中国Ⅲ级成矿区带划分基础上,总结研究大地构造单元、地质演化、成矿地质条件、空间分布特征、金矿类型、区域成矿要素、资源量等,初步厘定42 个金矿集区,其空间呈集中分布特征。根据金矿勘查单位面积的钻探数量,初步将中国金矿集区划分为高、中、低工作程度区,高程度区主要分布在中东部地区;除砂金矿外,中国88.12%的岩金(伴生金) 矿探矿深度在500 m 以上,说明探矿钻探验证偏少、偏浅。文章还探讨了中国金矿集区资源找矿潜力,提出了勘查找矿方向和建议,指出中东部老矿山深部、外围和西部金矿集区特别是位于新疆、青海、西藏等地区的,是未来找矿潜力重点区域,未查明资源储量巨大。

Wang B, Li J C, Wang C X, et al.

An overview of characteristics and prospecting of gold ore deposits in China

[J]. Geological Journal of China Universities, 2020, 26(2):121-131.

DOI:10.16108/j.issn1006-7493.2019033      [本文引用: 2]

Based on the geodynamic settings of gold metallogenesis and the basic geological features of gold ore deposits, China&rsquo;s gold deposits can be classified into 11 categories. Among these categories, the structurally-fractured altered-rock type, inner and outer contacting belts type of plutonic intrusives, the Carlin or quasi-Carlin type, hydrothermal type within low-grade metamorphic clastic rocks, and continental volcanic rock types are the types of interest in prospecting. As far as metallogenic ages concerned, those that occurred in Mesozoic and Cenozoic are the major types. According to their geotectonic units, geological evolution, metallogenic geological conditions, spatial-temporal distribution, gold deposit types, regional metallogenic factors, and volumes of mineral resources, totally 42 gold ore concentration areas, which are spatially distributed in clusters, have been preliminarily identified on the basis of China&rsquo;s III-graded classification scheme of metallogenic zones (belts). According to gold prospecting borehole quantities per unit area, China&rsquo;s gold ore concentration areas can be categorized into 3 levels, i.e., highly, moderately, and lowly developed. The highly developed ones are mainly distributed in Central and Eastern China. Except the placer gold deposits, about 88.12% boreholes for primary gold (rock gold or associated gold) deposits are less than 500 m with deep in China, suggesting that the quantities and depths of gold exploration drillings in China are less and shallower than in other countries. As for the gold resources exploration potentials, we propose that (1) in Central and Eastern China, the deep parts and the peripheries of the existing gold mines are key locations to be focused on; (2) for Western China, the gold ore concentration areas, which are located especially in Xinjiang Uygur Autonomous Region, Qinghai Province, and Tibet Autonomous Region, are the future key regions with immense potentials for unexplored gold resources.

宋明春.

胶东金矿深部找矿主要成果和关键理论技术进展

[J]. 地质通报, 2015, 34(9):1758-1771.

[本文引用: 4]

Song M C.

The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area,Shandong Province

[J]. Geological Bulletin of China, 2015, 34(9):1758-1771.

[本文引用: 4]

Yang J H, Chung S L, Wilde S A, et al.

Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt,East China:Geochronological,geochemical and Nd-Sr isotopic evidence

[J]. Chemical Geology, 2005, 214(1/2):99-125.

DOI:10.1016/j.chemgeo.2004.08.053      URL     [本文引用: 1]

郭敬辉, 陈福坤, 张晓曼, .

苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学

[J]. 岩石学报, 2005, 21(4):1281-1301.

[本文引用: 1]

Guo J H, Chen F K, Zhang X M, et al.

Evolution of syn-to post-collisional magmatism from north Sulu UHP belt,Eastern China:Zircon U-Pb geochronology

[J]. Acta Petrologica Sinica, 2005, 21(4):1281-1301.

[本文引用: 1]

胡芳芳, 范宏瑞, 杨进辉, .

胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定

[J]. 科学通报, 2004, 49(12):1191-1198.

[本文引用: 2]

Hu F F, Fan H R, Yang J H, et al.

Ore-forming age of gold-bearing quartz vein-type gold deposit in Jiaodong Rushan:U-Pb geochronology by hydrothermal zircon SHRIMP

[J]. Chinese Science Bulletin, 2004, 49(12):1191-1198.

[本文引用: 2]

郭春影, 张文钊, 葛良胜, .

胶东西北部金矿床深部资源潜力与找矿方向

[J]. 地质与勘探, 2012, 48(1):58-67.

[本文引用: 2]

Guo C Y, Zhang W Z, Ge L S, et al.

Deep prospecting potential of gold deposits in the northwestern Jiaodong Peninsula and their ore-search direction

[J]. Geology and Exploration, 2012, 48(1):58-67.

[本文引用: 2]

宋明春, 崔书学, 尹丕厚. 胶西北金矿集中区深部大型—超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010.

[本文引用: 1]

Song M C, Cui S X, Yin P H. Ore search and metallogenic model of deep large and ultra-large gold deposits in the gold concentration area of northwestern Jiaodong Peninsula[M]. Beijing: Geological Publishing House, 2010.

[本文引用: 1]

王义天, 叶会寿, 刘俊辰, .

小秦岭金矿田三叠纪成矿事件的伸展构造背景:构造岩的40Ar-39Ar年代学证据

[J]. 岩石学报, 2021, 37(8):2419-2430.

[本文引用: 2]

Wang Y T, Ye H S, Liu J C, et al.

Extensional tectonic setting of the Triassic metallogenic event in the Xiaoqinling goldfield:Evidence from 40Ar-39Ar chronology of the tectonite

[J]. Acta Petrologica Sinica, 2021, 37(8):2419-2430.

DOI:10.18654/1000-0569/2021.08.10      URL     [本文引用: 2]

李铁刚, 武广, 陈公正, .

华北克拉通南缘小秦岭矿集区灵湖金矿床成因:流体包裹体和H-O、S-Pb同位素证据

[J]. 地球科学与环境学报, 2020, 42(5):569-583.

[本文引用: 1]

Li T G, Wu G, Chen G Z, et al.

Genesis of Linghu gold deposit in Xiaoqinling ore district,the southern margin of North China Craton,China:evidence from fluid inclusions,H-O and S-Pb isotopic compositions

[J]. Journal of Earth Sciences and Environment, 2020, 42(5):569-583.

[本文引用: 1]

Chen Y J, Zhao Y C.

Geochemical characteristics and evolution of REE in the early Precambrian sediments:Evidences from the southern margin of the North China Craton

[J]. Episodes, 1997, 20(2):109-116.

DOI:10.18814/epiiugs/1997/v20i2/008      URL     [本文引用: 1]

徐九华, 何知礼, 申世亮, .

小秦岭文峪—东闯金矿床稳定同位素地球化学及矿液矿质来源

[J]. 地质找矿论丛, 1993, 8(2):87-100.

[本文引用: 1]

Xu J H, He Z L, Shen S L, et al.

Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluid and materials

[J]. Contributions to Geology and Mineral Resources Research, 1993, 8(2):87-100.

[本文引用: 1]

马克忠, 陈懋弘.

桂西北百勇金矿、百蓬金矿粗粒黄铁矿和毒砂的矿物学特征

[J]. 矿物学报, 2020, 40(5):601-614.

[本文引用: 2]

Ma K Z, Chen M H.

Mineralogical characteristics of coarse-grained pyrites and arsenopyrites in the Baiyong and Baipeng gold deposits,Northwest Guangxi,China

[J]. Acta Mineralogica Sinica, 2020, 40(5):601-614.

[本文引用: 2]

毛景文, 胡瑞忠, 陈毓川. 大规模成矿作用与大型矿集区[M]. 北京: 地质出版社, 2005.

[本文引用: 1]

Mao J W, Hu R Z, Chen Y C. Large-scale metallogeny and large ore-concentrated areas[M]. Beijing: Geological Publishing House, 2005.

[本文引用: 1]

韩至钧, 盛学庸.

黔西南金矿及其成矿模式

[J]. 贵州地质, 1996, 13(2):146-153.

[本文引用: 1]

Han Z J, Sheng X Y.

Gold deposits in southwest Guizhou and their metallogenetic model

[J]. Guizhou Geology, 1996, 13(2):146-153.

[本文引用: 1]

牛翠祎, 王科强, 李绍儒.

滇黔桂成矿区金矿资源预测评价

[J]. 中国地质, 2011, 38(6):1576-1583.

[本文引用: 1]

Niu C Y, Wang K Q, Li S R.

Prediction and evaluation of gold resources in the Yunnan-Guizhou-Guangxi metallogenic area

[J]. Geology in China, 2011, 38(6):1576-1583.

[本文引用: 1]

倪师军, 刘显凡, 金景福. 滇黔桂金三角区微细浸染型金矿床成矿流体地球化学特征[M]. 成都: 成都科技大学出版社,1997.

[本文引用: 1]

Ni S J, Liu X F, Jin J F. Geochemical characteristic of ore-forming fluid of micro-dissiment gold deposits in the contiguous zone of Yunnan-Guizhou-Guangxi Provinces[M]. Chengdu: Chengdu Technological University Press,1997.

[本文引用: 1]

朱赖民, 刘显凡, 金景福, .

滇—黔—桂微细浸染型金矿床时空分布与成矿流体来源研究

[J]. 地质科学, 1998, 33(4):463-474.

[本文引用: 1]

Zhu L M, Liu X F, Jin J F, et al.

The study of the time-space distribution and source of ore-forming fluid for the fine-dissimented gold deposits in the Yunnan-Guizhou-Guangxi area

[J]. Scientia Geologica Sinica, 1998, 33(4):463-474.

[本文引用: 1]

肖龙, 叶乃清, 张明华.

滇黔桂地区微细粒浸染型金矿构造控制特征

[J]. 桂林工学院学报, 1997, 17(3):234-239.

[本文引用: 2]

Xiao L, Ye N Q, Zhang M H.

The characteristics of ore-controlling structure and ore-finding prospect in the contiguous zone of Yunnan-Guizhou-Guangxi area

[J]. Journal of Guilin Institute of Technology, 1997, 17(3):234-239.

[本文引用: 2]

韩雪. 贵州烂泥沟卡林型金矿床地质地球化学特征及成因探讨[D]. 成都: 成都理工大学, 2012.

[本文引用: 1]

Han X. The study on geologic-geochemical characteristics and causes discusses of the Lannigou carlin-type gold deposits in Guizhou[D]. Chengdu: Chengdu University of Technology, 2012.

[本文引用: 1]

Williams-Jones A E, Bowell R J, Migdisov A A.

Gold in solution

[J]. Elements, 2009, 5(5):281-287.

DOI:10.2113/gselements.5.5.281      URL     [本文引用: 1]

朱赖民, 金景福, 何明友, .

初论黔西南微细浸染型金矿床深源流体成矿

[J]. 矿物岩石地球化学通报, 1997, 16(3):35-39.

[本文引用: 1]

Zhu L M, Jin J F, He M Y, et al.

An initial study of the mineralization of plutonic fluid of the fine-disseminated gold deposit in Southwest Guizhou Province

[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 1997, 16(3):35-39.

[本文引用: 1]

郭春影. 胶东三山岛—仓上金矿带构造—岩浆—流体金成矿系统[D]. 北京: 中国地质大学(北京), 2009.

[本文引用: 2]

Guo C Y. Tectonic setting,magmatic sequence and fluid of gold metallogenic system of the Sanshandao-Cangshang fault in Jiaodong,China[D]. Beijing: China University of Geoscience (Beijing), 2009.

[本文引用: 2]

张佳楠. 山东莱州焦家金矿床矿化富集规律及矿床成因探讨[D]. 长春: 吉林大学, 2012.

[本文引用: 3]

Zhang J N. Mineralization enrichment regularity and the genesis discussed of Jiaojia gold deposit,Laizhou City,Shandong Province[D]. Changchun: Jilin University, 2012.

[本文引用: 3]

宋明春, 宋英昕, 沈昆, .

胶东焦家深部金矿矿床地球化学特征及有关问题讨论

[J]. 地球化学, 2013, 42(3):274-289.

[本文引用: 2]

Song M C, Song Y X, Shen K, et al.

Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field,Shandong Peninsula,China

[J]. Geochimica, 2013, 42(3):274-289.

[本文引用: 2]

Deng J, Liu X F, Wang Q F, et al.

Origin of the Jiaodong-type Xinli gold deposit,Jiaodong Peninsula,China:Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions

[J]. Ore Geology Reviews, 2015, 65:674-686.

DOI:10.1016/j.oregeorev.2014.04.018      URL     [本文引用: 2]

Mills S E, Tomkins A G, Weinberg R F, et al.

Anomalously silver-rich vein-hosted mineralisation in disseminated-style gold deposits,Jiaodong gold district,China

[J]. Ore Geology Reviews, 2015, 68:127-141.

DOI:10.1016/j.oregeorev.2014.12.014      URL     [本文引用: 3]

Wen B J, Fan H R, Santosh M, et al.

Genesis of two different types of gold mineralization in the Linglong gold field,China:Constrains from geology,fluid inclusions and stable isotope

[J]. Ore Geology Reviews, 2015, 65:643-658.

DOI:10.1016/j.oregeorev.2014.03.018      URL     [本文引用: 2]

Xu W G, Fan H R, Yang K F, et al.

Exhaustive gold mineralizing processes of the Sanshandao gold deposit,Jiaodong Peninsula,eastern China:Displayed by hydrothermal alteration modeling

[J]. Journal of Asian Earth Sciences, 2016, 129:152-169.

DOI:10.1016/j.jseaes.2016.08.008      URL     [本文引用: 2]

Yang L Q, Deng J, Guo L N, et al.

Origin and evolution of ore fluid,and gold-deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,eastern China

[J]. Ore Geology Reviews, 2016, 72:585-602.

DOI:10.1016/j.oregeorev.2015.08.021      URL     [本文引用: 2]

吴迪. 山东夏甸金矿床地球化学特征及矿床成因探讨[D]. 西安: 长安大学, 2016.

[本文引用: 3]

Wu D. Geochemical characteristics and genesis of gold deposits of Xiadian,Shandong[D]. Xi’an: Changan University, 2016.

[本文引用: 3]

Deng J, Yang L Q, Groves D I, et al.

An integrated mineral system model for the gold deposits of the giant Jiaodong province,eastern China

[J]. Earth-Science Reviews, 2020, 208:103274.

DOI:10.1016/j.earscirev.2020.103274      URL     [本文引用: 3]

聂凤军, 江思宏, 赵月明.

小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究

[J]. 矿床地质, 2001, 20(2):163-173.

[本文引用: 3]

Nie F J, Jiang S H, Zhao Y M.

Lead and sulfur isotopic studies of the Wenyu and the Dongchuang quartz vein type gold deposits in Xiaoqinling area,Henan and Shaanxi Provinces,Central China

[J]. Mineral Deposits, 2001, 20(2):163-173.

[本文引用: 3]

Mao J W, Goldfarb R J, Zhang Z W, et al.

Gold deposits in the Xiaoqinling-Xiong'ershan region,Qinling Mountains,central China

[J]. Mineralium Deposita, 2002, 37(3/4):306-325.

DOI:10.1007/s00126-001-0248-1      URL     [本文引用: 2]

王斌. 小秦岭金矿地球化学特征及矿床成因探讨[D]. 北京: 中国地质大学(北京), 2009.

[本文引用: 2]

Wang B. Geological-geochemical features and genesis of Xiaoqinling gold deposits[D]. Beijing: China University of Geoscience (Beijing), 2009.

[本文引用: 2]

赵海香. 河南小秦岭金矿成矿作用地球化学研究[D]. 南京: 南京大学, 2011.

[本文引用: 2]

Zhao H X. Geochemistry of ore-forming processes of the Xiaoqinling gold district,Henan Province[D]. Nanjing: Nanjing University, 2011.

[本文引用: 2]

Li J W, Li Z K, Zhou M F, et al.

The early cretaceous Yangzhaiyu lode gold deposit,North China Craton:A link between craton reactivation and gold veining

[J]. Economic Geology, 2012a, 107(1):43-79.

DOI:10.2113/econgeo.107.1.43      URL     [本文引用: 2]

Li J W, Bi S J, Selby D, et al.

Giant Mesozoic gold provinces related to the destruction of the North China craton

[J]. Earth and Planetary Science Letters, 2012b, 349-350:26-37.

DOI:10.1016/j.epsl.2012.06.058      URL     [本文引用: 2]

任志媛. 小秦岭东部樊岔和义寺山金矿床地质矿化特征与矿床成因[D]. 武汉: 中国地质大学, 2012.

[本文引用: 2]

Ren Z Y. Mineralization characteristic and genesis of the Fancha and Yisishan gold deposits in the Eastern Xiaoqinling District[D]. Wuhan: China University of Geoscience, 2012.

[本文引用: 2]

Zhou Z J, Chen Y J, Jiang S Y, et al.

Geology,geochemistry and ore genesis of the Wenyu gold deposit,Xiaoqinling gold field,Qinling Orogen,southern margin of North China Craton

[J]. Ore Geology Reviews, 2014, 59:1-20.

DOI:10.1016/j.oregeorev.2013.12.001      URL     [本文引用: 2]

Zhou Z J, Chen Y J, Jiang S Y, et al.

Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit,Xiaoqinling gold field,Qin ling Orogen,China

[J]. Ore Geology Reviews, 2015, 66:47-64.

DOI:10.1016/j.oregeorev.2014.10.020      URL     [本文引用: 2]

盛涛. 豫西地区萑香洼和樊岔金矿黄铁矿成因矿物学研究[D]. 北京: 中国地质大学(北京), 2016.

[本文引用: 2]

Sheng T. The Genetic mineralogical study of pyrite in the Huanxiangwa and Fancha gold deposits,Western Henan Province[D]. Beijing: China University of Geoscience (Beijing), 2016.

[本文引用: 2]

展恩鹏, 王玭, 齐楠, .

河南灵宝樊岔金矿床成矿流体和同位素地球化学研究

[J]. 矿床地质, 2019, 38(3):459-478.

[本文引用: 2]

Zhan E P, Wang P, Qi N, et al.

Ore-forming fluid and isotope geochemical study of Fancha gold deposit in Lingbao County,Henan Province

[J]. Mineral Deposits, 2019, 38(3):459-478.

[本文引用: 2]

刘俊辰. 小秦岭金矿集区成矿物质来源与富集机制[D]. 北京: 中国地质大学(北京), 2020.

[本文引用: 2]

Liu J C. Origin of the ore-forming materials and enrichment mechanism in the Xiaoqinling goldfield,southern margin of the North China Craton:A case study of the Fancha gold deposit[D]. Beijing: China University of Geoscience (Beijing), 2020.

[本文引用: 2]

Li S S, Li L, Li S R, et al.

Age and mineralization processes of decratonic lode gold deposits in the southern North China Craton:Constraints from trace elements,in-situ S-Pb isotopes and Rb-Sr geochronology of pyrite from the Chen'er gold deposit

[J]. Ore Geology Reviews, 2022, 145:104888.

DOI:10.1016/j.oregeorev.2022.104888      URL     [本文引用: 2]

Zhao S R, Li Z K, Zhao X F, et al.

New constraints on genesis of the Qiangma gold deposit,southern North China Craton:Evidence from rutile U-Pb dating,pyrite trace element composition and S-Pb isotopes

[J]. Ore Geology Reviews, 2022, 141:104647.

DOI:10.1016/j.oregeorev.2021.104647      URL     [本文引用: 2]

刘建中, 邓一明, 刘川勤, .

贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式

[J]. 中国地质, 2006, 33(1):169-177.

[本文引用: 2]

Liu J Z, Deng Y M, Liu C Q, et al.

Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County,Guizhou Province

[J]. Geology in China, 2006, 33(1):169-177.

[本文引用: 2]

Zhang X C, Spiro B, Halls C, et al.

Sediment-hosted disseminated gold deposits in Southwest Guizhou,PRC:Their geological setting and origin in relation to mineralogical,fluid inclusion,and stable-isotope characteristics

[J]. International Geology Review, 2010, 45(5):407-470.

DOI:10.2747/0020-6814.45.5.407      URL     [本文引用: 2]

王泽鹏, 夏勇, 宋谢炎, .

太平洞—紫木凼金矿区同位素和稀土元素特征及成矿物质来源探讨

[J]. 矿物学报, 2012, 32(1):93-100.

[本文引用: 2]

Wang Z P, Xia Y, Song X Y, et al.

Isotopes and REE characteristic and ore-forming materials source of the Taipingdong-Zimudang gold deposit

[J]. Acta Mineralogica Sinica, 2012, 32(1):93-100.

[本文引用: 2]

黄建国, 李虎杰, 李文杰, .

贵州戈塘金矿含矿岩系元素地球化学特征

[J]. 中国地质, 2012, 39(5):1318-1326.

[本文引用: 2]

Huang J G, Li H J, Li W J, et al.

Element geochemistry of ore-bearing rock series in the Getang gold deposit,Guizhou Province

[J]. Geology in China, 2012, 39(5):1318-1326.

[本文引用: 2]

范军. 黔西南戈塘大型金矿床地质地球化学及成因研究[D]. 昆明: 昆明理工大学, 2015.

[本文引用: 2]

Fan J.Study on geochemistry and metallogenic mechanism of the Getang large-scale gold ore deposit, Guizhou Province,China[D]. Kunming: Kunming University of Science and Technology, 2015.

[本文引用: 2]

靳晓野. 黔西南泥堡、水银洞和丫他金矿的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学, 2017.

[本文引用: 2]

Jin X Y. Geology,mineralization and genesis of the Nibao,Shuiyindong and Yata gold deposits in SW Guizhou Province,China[D]. Wuhan: China University of Geoscience, 2017.

[本文引用: 2]

Yan J, Hu R Z, Liu S, et al.

NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China:New insights into the origin and evolution of Au-bearing fluids

[J]. Ore Geology Reviews, 2018, 92:29-41.

DOI:10.1016/j.oregeorev.2017.10.015      URL     [本文引用: 2]

张馨月, 胡煜昭, 刘晓震.

贵州尾若金矿床载金矿物EPMA分析与原位硫同位素特征

[J]. 矿物学报, 2019, 39(1):98-107.

[本文引用: 2]

Zhang X Y, Hu Y Z, Liu X Z.

Electron probe micro analysis (EPMA) and the in-situ sulfur isotope analysis of gold-bearing minerals in the Weiruo gold deposit,Guizhou Province,China

[J]. Acta Mineralogica Sinica, 2019, 39(1):98-107.

[本文引用: 2]

Li J X, Hu R Z, Zhao C H, et al.

Sulfur isotope and trace element compositions of pyrite determined by NanoSIMS and LA-ICP-MS:new constraints on the genesis of the Shuiyindong Carlin-like gold deposit in SW China

[J]. Mineralium Deposita, 2020, 55(7):1279-1298.

DOI:10.1007/s00126-019-00929-w      [本文引用: 2]

Lin S R, Hu K, Cao J, et al.

An in situ sulfur isotopic investigation of the origin of Carlin-type gold deposits in Youjiang Basin,southwest China

[J]. Ore Geology Reviews, 2021, 134:104187.

DOI:10.1016/j.oregeorev.2021.104187      URL     [本文引用: 4]

Yang L, Wang Q F, Large R R, et al.

Texture and geochemistry of pyrite from the Jinya,Nakuang and Gaolong gold deposits in the Youjiang Basin:implications for basin-scale gold mineralization

[J]. Mineralium deposita, 2022, 57(8):1367-1390.

DOI:10.1007/s00126-022-01115-1      [本文引用: 2]

宋明春, 宋英昕, 丁正江, .

胶东金矿床:基本特征和主要争议

[J]. 黄金科学技术, 2018, 26(4):406-422.

[本文引用: 2]

Song M C, Song Y X, Ding Z J, et al.

Jiaodong gold deposits:Essential characteristics and major controversy

[J]. Gold Science and Technology, 2018, 26(4):406-422.

[本文引用: 2]

Xu X S, Griffin W L, Ma X, et al.

The Taihua group on the southern margin of the North China Craton:Further insights from U-Pb ages and Hf isotope compositions of zircons

[J]. Mineralogy and Petrology, 2009, 97(1/2):43-59.

DOI:10.1007/s00710-009-0062-5      URL     [本文引用: 2]

胡瑞忠, 彭建堂, 马东升, .

扬子地块西南缘大面积低温成矿时代

[J]. 矿床地质, 2007, 26(6):583-596.

[本文引用: 2]

Hu R Z, Peng J T, Ma D S, et al.

Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif

[J]. Mineral Deposits, 2007, 26(6):583-596.

[本文引用: 2]

Liu J C, Wang Y T, Mao J W, et al.

Precise ages for lode gold mineralization in the Xiaoqinling gold field,southern margin of the North China Craton:New constraints from in situ U-Pb dating of Hydrothermal monazite and rutile

[J]. Economic Geology, 2021, 116(3):773-786.

DOI:10.5382/econgeo.4800      URL     [本文引用: 1]

The Xiaoqinling gold field, located along the southern margin of the North China craton, is the second largest gold producer in China, which comprises more than 1,200 auriferous quartz veins with a proven gold reserve of at least 800 tons. Previously, the absolute age of the gold metallogenesis in this area has not been well defined due to the lack of suitable dating minerals. This study presents new in situ laser ablation-inductively coupled plasma-mass spectrometry U-Pb ages of coexisting hydrothermal monazite and rutile for the Fancha gold deposit in this area, which yielded 206Pb/238U ages of 127.5 ± 0.7 Ma (n = 65, mean square of weighted deviates [MSWD] = 1.8) and 129.7 ± 4.3 Ma (n = 37, MSWD = 1.4), respectively. Both ages overlap within analytical uncertainty at the 2σ level of significance, suggesting that both gold-bearing veins were emplaced at ca. 128 Ma. Mineralogical observations indicate that the monazite and rutile precipitated simultaneously with gold from the hydrothermal fluid. Our new data, combined with recently published monazite age, define a more precise gold episode, demonstrating that the gold endowment of the Xiaoqinling area was formed during a relatively brief period at ca. 130 to 127 Ma. We suggest that auriferous fluids were generated as a result of interactions between the enriched mantle and the lower crust, which was driven by westward flat slab subduction of the Paleo-Pacific plate during the late Mesozoic. The peak of lithospheric thinning during the postsubduction may have led to the rapid release of gold from the fertilized mantle. Consequently, the large number of gold-bearing veins in the Xiaoqinling area may ultimately be related to the tectonic evolution and mantle fluid processes that occurred during Early Cretaceous lithospheric extension.

Chen M H, Bagas L, Liao X, et al.

Hydrothermal apatite SIMS Th-Pb dating:Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao,SW China

[J]. Lithos, 2019,324-325:418-428.

[本文引用: 1]

蒋少涌, 戴宝章, 姜耀辉, .

胶东和小秦岭:两类不同构造环境中的造山型金矿省

[J]. 岩石学报, 2009, 25(11):2727-2738.

[本文引用: 1]

Jiang S Y, Dai B Z, Jiang Y H, et al.

Jiaodong and Xiaoqinling:Two orogenic gold provinces formed in different tectonic settings

[J]. Acta Petrologica Sinica, 2009, 25(11):2727-2738.

[本文引用: 1]

Hu R Z, Fu S L, Huang Y, et al.

The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model

[J]. Journal of Asian Earth Sciences, 2017, 137:9-34.

DOI:10.1016/j.jseaes.2016.10.016      URL     [本文引用: 2]

徐九华, 谢玉玲, 申世亮.

小秦岭与胶东金矿床的成矿流体特征对比

[J]. 矿床地质, 1997, 16(2):56-67.

[本文引用: 1]

Xu J H, Xie Y L, Shen S L.

A comparison of ore-forming fluids between gold deposits in Xiaoqinling Mountains and those in Jiaodong Peninsula

[J]. Mineral Deposits, 1997, 16(2):56-67.

[本文引用: 1]

De Wit M J, Thiart C. Metallogenic fingerprints of Archean Cratons[M]. London: Geological Society Special Publication, 2005:59-70.

[本文引用: 1]

汪洋.

华北和扬子克拉通的成矿指纹:与冈瓦纳大陆克拉通的对比

[J]. 矿物学报, 2015, 35(S1):62-63.

[本文引用: 1]

Wang Y.

Metallogenetic fingerprints of the North China and Yangtze cratons:Comparison with the Gondwana Cratons

[J]. Acta Mineralogica Sinica, 2015, 35(S1):62-63.

[本文引用: 1]

朱日祥, 范宏瑞, 李建威, .

克拉通破坏型金矿床

[J]. 中国科学:地球科学, 2015, 45(8):1153-1168.

[本文引用: 1]

Zhu R X, Fan H R, Li J W, et al.

Decratonic gold deposits

[J]. Science China:Earth Sciences. 2015, 45(8):1153-1168.

[本文引用: 1]

翟明国.

华北克拉通的形成演化与成矿作用

[J]. 矿床地质, 2010, 29(1):24-36.

[本文引用: 1]

Zhai M G.

Tectonic evolution and metallogenesis of North China Craton

[J]. Mineral Deposits. 2010, 29(1):24-36.

[本文引用: 1]

Li J, Yang Z M, Song M C, et al.

Gold remobilization of the Sanshandao gold deposit,Jiaodong Peninsula,Eastern China:Perspective from in-situ sulfide trace elements and sulfur isotopes

[J]. Ore Geology Reviews, 2023, 158:105505.

DOI:10.1016/j.oregeorev.2023.105505      URL     [本文引用: 2]

王国强. 胶西北新城金矿床成矿作用:多元同位素示踪[D]. 北京: 中国地质大学(北京), 2016.

[本文引用: 1]

Wang G Q. Mineralization of the Xincheng gold deposit,Northwest Jiaodong Peninsula:Multiple isotope tracer[D]. Beijing: China University of Geoscience (Beijing), 2016.

[本文引用: 1]

黄德业.

胶东金矿成矿系列硫同位素研究

[J]. 矿床地质, 1994, 13(1):75-87.

[本文引用: 1]

Huang D Y.

Sulfur isotope studies of the metallogenic series of gold deposits in Jiaodong(Eastern Shandong)area

[J]. Mineral Deposits, 1994, 13(1):75-87.

[本文引用: 1]

王沛成, 李洪奎, 张忠义, .

胶东群新议

[J]. 地层学杂志, 1999, 23(4):291-293.

[本文引用: 1]

Wang P C, Li H K, Zhang Z Y, et al.

New comments on the Jiaodong Group

[J]. Journal of Stratigraphy, 1999, 23(4):291-293.

[本文引用: 1]

王世进, 万渝生, 郭瑞朋, .

鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年

[J]. 山东国土资源, 2011, 27(4):1-7.

[本文引用: 1]

Wang S J, Wan Y S, Guo R P, et al.

SHRIMP zircon dating of Linglong type (Superunit) granite in Eastern Shandong Province

[J]. Shandong Land and Resources, 2011, 27(4):1-7.

[本文引用: 1]

关康, 罗镇宽, 苗来成, .

胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究

[J]. 地质科学, 1998, 33(3):64-74.

[本文引用: 1]

Guan K, Luo Z K, Miao L C, et al.

SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye district

[J]. Scientia Geologica Sinica, 1998, 33(3):64-74.

[本文引用: 1]

Wu H J, He Y, Li S, et al.

Partial melts of intermediate-felsic sources in a wedged thickened crust:Insights from granites in the Sulu Orogen

[J]. Journal of Petrology, 2020, 61(5):egaa053.

[本文引用: 1]

Chen Y J, Pirajno F, Sui Y H.

Isotope geochemistry of the Tieluping silver-lead deposit,Henan,China:A case study of orogenic silver-dominated deposits and related tectonic setting

[J]. Mineralium Deposita, 2004, 39(5/6):560-575.

DOI:10.1007/s00126-004-0429-9      URL     [本文引用: 1]

Fan H R, Zhai M G, Xie Y H, et al.

Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China

[J]. Mineralium Deposita, 2003, 38(6):739-750.

DOI:10.1007/s00126-003-0368-x      URL     [本文引用: 1]

Hu F F, Fan H R, Jiang X H, et al.

Fluid inclusions at different depths in the Sanshandao gold deposit,Jiaodong Peninsula,China

[J]. Geofluids, 2013, 13(4):528-541.

DOI:10.1111/gfl.2013.13.issue-4      URL     [本文引用: 1]

Deng J, Wang C M, Bagas L, et al.

Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula,China:Constraints from zircon U-Pb,illite K-Ar,and apatite fission track thermochronometry

[J]. Mineralium Deposita, 2015, 50(8):987-1006.

DOI:10.1007/s00126-015-0584-1      URL     [本文引用: 1]

Yang L Q, Deng J, Wang Z L, et al.

Relationships between gold and pyrite at the Xincheng gold deposit,Jiaodong Peninsula,China:Implications for gold source and deposition in a brittle epizonal environment

[J]. Economic Geology, 2016, 111(1):105-126.

DOI:10.2113/econgeo.111.1.105      URL     [本文引用: 1]

赵新福, 李占轲, 赵少瑞, .

华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统

[J]. 地球科学, 2019, 44(1):52-68.

[本文引用: 1]

Zhao X F, Li Z K, Zhao S R, et al.

Early Cretaceous regional-scale magmatic-hydrothermal metallogenic system at the southern margin of the North China Carton

[J]. Earth Science, 2019, 44(1):52-68.

[本文引用: 1]

Peng Y W, Gu X X, Zhang Y M, et al.

Ore-forming process of the Huijiabao gold district,southwestern Guizhou Province,China:Evidence from fluid inclusions and stable isotopes

[J]. Journal of Asian Earth Sciences, 2014, 93:89-101

DOI:10.1016/j.jseaes.2014.06.022      URL     [本文引用: 1]

卢焕章, 朱笑青, 单强, .

金矿床中金与黄铁矿和毒砂的关系

[J]. 矿床地质. 2013, 32(4):823-842.

[本文引用: 1]

Lu H Z, Zhu X Q, Shan Q, et al.

Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits

[J]. Mineral Deposits, 2013, 32(4):823-842.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com