E-mail Alert Rss
 

物探与化探, 2023, 47(5): 1371-1378 doi: 10.11720/wtyht.2023.1488

生态地质调查

河南省洛阳市土壤硒全量、有效性及形态分布特征

田强国,1, 侯进凯1, 杨在伟2,3, 李立园,2,3

1.河南省地质矿产勘查开发局 第一地质矿产调查院,河南 洛阳 471023

2.浙江科技学院 环境与资源学院,浙江 杭州 310023

3.浙江省废弃生物质循环利用与生态处理技术重点实验室,浙江 杭州 310023

Distributions of the total concentration, bioavailability, and speciation of selenium in soils in Luoyang City, Henan Province, China

TIAN Qiang-Guo,1, HOU Jin-Kai1, YANG Zai-Wei2,3, LI Li-Yuan,2,3

1. Institute of Geology and Mineral Resources Survey, Henan Bureau of Geology and Mineral Development, Luoyang 471023, China

2. School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China

3. Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, China

通讯作者: 李立园(1993-),女,实验师,主要从事地球化学方面的工作。Email:llyuan@zust.edu.cn

责任编辑: 蒋实

收稿日期: 2022-09-25   修回日期: 2023-02-17  

基金资助: 洛阳市自然资源和规划局洛阳市硒资源详查项目(洛公交易采购[2018]053号)

Received: 2022-09-25   Revised: 2023-02-17  

作者简介 About authors

田强国(1981-),男,中级工程师,主要从事地球化学、地质矿产方面的工作。Email:527013743@qq.com

摘要

本文调查了河南省洛阳市土壤硒资源,分析了洛阳市不同地质背景、土壤类型、土地利用方式、酸碱性及有机质土壤中全硒含量分布特征,测定了土壤中硒的有效性及化学形态分布。结果显示,洛阳市土壤全硒含量范围介于(0.03 ~ 5.67)×10-6,平均值为0.30×10-6,适量和高硒土壤面积占研究区的94.73%;区内蓟县系云梦山组土壤硒平均含量最高,寒武系辛集组土壤硒平均含量最低;砂姜黑土中全硒平均含量最高,而水稻土全硒平均含量最低;不同土地利用方式中,水田和有林地土壤中全硒平均含量较高;土壤酸性和有机质含量高的条件下有利于硒的富集;不同类型土壤中,潮土中有效态硒的平均含量最高,红黏土中有效态硒的平均含量最低;碱性土壤中有效硒平均含量高于中性和酸性土壤;土壤中硒主要以残渣态、强有机结合态和腐殖酸结合态存在,碱性土壤和红黏土中生物可利用态硒的平均含量最高。洛阳市土壤硒资源具有较大利用潜力,可依据研究区域全硒含量分布特征开展具有针对性的富硒产业发展规划。

关键词: 土壤; ; 有效性; 化学形态

Abstract

Targeting the selenium resource in soils of Luoyang City, Henan Province, this study analyzed the distribution of total selenium concentration under different geological settings, soil types, land use types, acidity and alkalinity, and organic matter. Furthermore, it determined the bioavailability and speciation distribution of selenium in the soils. The results indicate that: (1) The soils in Luoyang City have total selenium concentrations of (0.03~5.67)×10-6, with an average of 0.30×10-6, and the area of soils with moderate and rich selenium accounts for 94.73%; (2) The average selenium concentration is the highest in soils of the Jixian Yunmengshan formation and the lowest in soils of the Cambrian Xinji Formation; (3) The average total selenium concentration is the highest in lime concretion black soil and the lowest in paddy soil; (4) Regarding land use types, the average total selenium concentration is relatively high in soils of paddy land and woodland; (5) Soils with high acidity and high organic matter concentrations are favorable for selenium enrichment; (6) In terms of soil types, the average concentration of bioavailable selenium is the highest in fluvo-aquic soils and the lowest in red clays; (7) The average concentration of bioavailable selenium is higher in alkaline soils than in neutral and acidic soils; (8) Selenium in soils primarily occurs in residue, strong organic bound, and humic acidic bound forms, with the highest average concentration of bioavailable selenium occurring in alkaline soils and red clays. The selenium resource in the soils in Luoyang City has high utilization potential, and it is feasible to conduct targeted development and planning of the selenium-rich industry according to the distribution of total selenium concentration in the study area.

Keywords: soil; selenium; bioavailability; speciation

PDF (2826KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378 doi:10.11720/wtyht.2023.1488

TIAN Qiang-Guo, HOU Jin-Kai, YANG Zai-Wei, LI Li-Yuan. Distributions of the total concentration, bioavailability, and speciation of selenium in soils in Luoyang City, Henan Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1371-1378 doi:10.11720/wtyht.2023.1488

0 引言

硒是人类和动物必需的微量元素,具有抗氧化、防癌抗癌、提高免疫力、预防心血管疾病等作用[1-3]。硒摄入过量会导致神经系统疾病、皮肤损伤、脱发等中毒现象,而摄入不足可导致克山病、大骨节病和白肌病等[4]。人体所需的硒元素主要来自于农产品,而农作物中硒含量的高低取决于土壤中硒的含量及其赋存形态,因此土壤硒是人体硒的最终来源[5-7]。硒在地壳中的丰度值仅为(0.05~0.09)×10-6,我国土壤硒资源分布很不均匀,低或缺硒土壤面积约占国土面积的72%,富硒区分布范围较少[8-10]。世界卫生组织建议成人硒摄入量为40~400 μg/d,而我国人群硒摄入量仅为13.3 μg/d,约有366个县1.5亿人群因硒摄入不足而需要关注健康影响[11-13]。随着物质生活水平的提高,人们对高品质和高营养价值的农产品的需求也越来越大。因此,深入认识区域土壤硒全量、有效性及形态分布特征,对区域富硒农产品的开发具有重要指导意义。本文在分析洛阳地区不同行政区、土壤类型、地质背景、土地利用方式、酸碱性土壤中硒的含量及分布特征基础上,初步探讨了土壤中硒的有效性和形态分布特征,为该地区的富硒产业发展、农业生产布局、粮食安全、绿色产能评价、城市规划和土地资源科学利用等提供科学依据。

1 研究区概况

河南省洛阳市处于我国地势的第二阶梯与第一阶梯的过渡地带,地势西高东低,境内山川丘陵交错,地形复杂多样,其中山区、丘陵和平原面积分别占全市总面积的45.51%、40.73%和13.76%。研究区位于洛阳—伊川盆地,涉及伊川县、汝阳县、嵩县、孟津县和洛阳市区。区内出露地层主要有新太古界太华群、登封群,中元古界长城系、蓟县系,新元古界青白口系、震旦系,古生界寒武系、石炭系、二叠系,中生界三叠系、白垩系,新生界古近系、新近系及第四系。区域构造以断层为主,局部发育褶皱。区内土壤类型以褐土、潮土、红黏土和粗骨土为主。2010年多目标区域地球化学调查成果显示,洛阳市土壤全氮含量处于相对缺乏—适度水平,速效磷含量处于适度—富足水平,全钾含量处于富足水平,有机质含量处于缺乏和严重缺乏水平。洛阳市土壤由中基性火山岩的成土母质发育而来,土壤具有区域性富亲铁亲硫元素的地球化学特点,肥力等级高、质量好。

2 材料与方法

2.1 样品采集与处理

2018~2020年在伊川县鸦岭镇—汝阳县小店镇一带和孟津县麻屯镇—洛龙区白马寺镇一带开展1∶5万土地质量地球化学评价,涉及调查面积770 km2。按照图斑结合方里网格布设面上调查点,在工作前将布设样点导入奥维互动地图软件中,野外通过奥维地图引导到预布样点后,采用多点法采样,即1个主样点,4个子样点。子样点与主样点在同一类型地块内,距主样点距离20~30 m。采样时垂直采集地表到20 cm深的土柱,上下均匀采集。先用铁锹切割一个20 cm深的土方,再用木铲去除与铁铲接触面的土壤。去除样品中的动植物残体、砾石、砖块、肥料团等杂物后,装入布样袋中,并标记采样编号。如为潮湿样品,则套上专用聚乙烯塑料袋,以免样品间相互污染。用GPS记录下每个主采样点的位置,并对采样点位置所处地貌环境、岩性、土壤质地、土壤类型、土地利用现状、地质背景、土壤细碎化程度等进行详细描述。土壤样品原始质量不低于1.5 kg。土壤样品带回实验室,在阴凉处自然风干,压碎的土样全部通过20目孔径尼龙筛。过筛后土壤样品称重后混匀、缩分,取300 g土壤样品装入棕色玻璃瓶中,进行实验室分析测试。此次共采集1∶5万表层土壤样5 982件,采样密度为7.8点/km,其中重复样158件,占比2.7%。

2.2 土壤理化性质测定

土壤样品分析测定工作在华北有色地质勘查局燕郊中心实验室完成。土壤pH值(土水比1∶2.5)采用离子选择电极法测试,检出限为0.1;有机质测试采用容量法,检出限为0.1%。分析测定所有土壤样品全硒含量,并根据典型样点分布情况,从中挑选162个土壤样品进行土壤有效硒含量测定、39个土壤样品进行土壤硒形态分析。土壤中全硒的分析方法为:称取0.500 0 g风干过200目筛的土壤样品,经浓硝酸—高氯酸消煮后,用原子荧光光谱法(AFS)测定,检出限为0.01×10-6。土壤有效硒提取方法为:称取10.00 g风干过20目筛的土壤样品放入150 mL硬质玻璃三角瓶中,加入50.0 mL浓度为1 mol/L的HCl浸提液,在水平振荡器上振荡1.5 h,离心过滤后,滤液用AFS分析测定。土壤中硒形态分为水溶态、离子交换态、碳酸盐结合态、腐殖酸结合态、铁锰氧化态、强有机结合态和残渣态共7种[14-15],测试步骤见表1。分析测试的质量控制按中国地质调查局《生态地球化学评价样品分析技术要求(试行)(DD 2005-03)》执行,所有分析测试结果均符合要求,数据质量可靠,满足土壤质量地球化学评价的需要。

表1   土壤中硒化学形态分析步骤

Table 1  Analytical steps for determining the chemical fraction of Se in soil

编号形态提取剂操作步骤
F1水溶态蒸馏水25 mL,摇匀,振荡30 min,离心20 min,过滤
F2离子交换态1 mol/L氯化镁溶液25 mL,摇匀,振荡30 min,离心20 min,过滤
F3碳酸盐结合态1 mol/L醋酸钠溶液25 mL,摇匀,振荡1 h,放置2 h,离心20 min,过滤
F4腐殖酸结合态0.1 mol/L焦磷酸钠溶液50 mL,摇匀,振荡40 min,离心20 min,过滤
F5铁锰氧化态0.25 mol/L盐酸羟胺—盐酸混合液50 mL,摇匀,振荡1 h,离心20 min,过滤
F6强有机结合态30%过氧化氢、(1+1)硝酸溶液和
3.2 mol/L醋酸铵—硝酸混合液
3 mL浓硝酸, 5 mL过氧化氢,摇匀,83 ℃恒温水浴1.5 h,补3 mL过
氧化氢,恒温水浴70 min,加入2.5 mL醋酸铵—硝酸溶液,稀释至
25 mL,放置10 h,离心20min,过滤
F7残渣态浓硝酸—高氯酸溶液取F6残渣加15 mL浓硝酸和3 mL高氯酸消煮

新窗口打开| 下载CSV


3 结果与分析

3.1 土壤全硒分布特征

3.1.1 表层土壤全硒分布特征

根据《土地质量地球化学评价规范》(DZ/T 0295—2016)中土壤硒健康指标等级划分原则,即缺硒土壤(w(Se)≤ 0.125×10-6)、边缘硒土壤(0.125×10-6 <w(Se)≤ 0.175×10-6)、适量硒土壤(0.175×10-6 <w(Se)≤ 0.40×10-6)、高硒土壤(0.40×10-6 <w(Se)≤ 3.0×10-6)、过剩硒土壤(w(Se)> 3.0×10-6),研究区土壤硒以适量为主,面积为647.01 km2,占比86.17%,高硒土壤区面积64.27 km2,占比8.56%,无硒过剩区,硒缺乏和边缘面积较小,分别占比2.04%和3.23%。研究区表层土壤全硒含量范围为(0.03 ~ 5.67)×10-6,平均含量为0.30×10-6,是河南省[16]、中国表层土壤[16]及世界土壤[17]中Se平均值0.19×10-6、0.22×10-6、0.20×10-6的1.58、1.36及1.50倍。从研究区行政区划来看(图1),土壤全硒平均含量大小为:汝阳县=洛阳市区(0.31×10-6)>全区(0.30×10-6)>伊川县=孟津县(0.27×10-6),可以看出研究区各行政区表层土壤全硒平均值普遍高于河南省[16]、中国[16]及世界[17]表层土壤背景值,表明研究区表层土壤硒存在富集特性。

图1

图1   不同行政区土壤全硒分布特征

注:柱高为算数平均值,误差线为校准差,n为样本数量;下同

Fig.1   Distribution characteristics of soil total Se concentrations in different administrative regions

note: the column height is the arithmetic average, the error line is the calibration error, n is the sample number; the same below


3.1.2 不同地质背景土壤全硒分布特征

研究区地层主要有蓟县系、寒武系、二叠系、三叠系、新近系、第四系6个地质单元,不同地质背景土壤硒元素地球化学特征如图2所示。由于不同地层年代气候、生物、地形、构造运动和古地理条件等的差异,不同成土母质形成的土壤全硒含量表现出较大的差异性,因此土壤硒含量受其所处的地质背景制约[18-20]。由图2可见,蓟县系云梦山组土壤硒含量平均值最高(0.34×10-6),其次为第四系全新统,土壤全硒含量平均值为0.33×10-6,与毛香菊等[21]研究河南新密典型富硒区发现第四系土壤中硒含量较高一致。研究区广泛分布的第四系上更新统、新近系大安组土壤硒含量平均值均为0.30×10-6,新近系洛阳组土壤硒含量平均值为0.29×10-6,第四系中更新统土壤硒含量平均值为0.27×10-6。总体来看,第四系地层土壤硒含量表现为全新统>上更新统>中更新统,自上而下硒含量逐步降低。第四系由山坡耕植土及洛河、伊河、汝河阶地黄土和河床、古河床流砂层组成,主要是黄土与冲洪积物,该区内物质成分与全区基本一致,说明该区第四系物质成分是区域物质成分混合作用的代表。通过数据对比发现,第四系可以基本代表本区硒的物质组成,且硒与有机质高值点出现在第四系颗粒细小的黏土和壤土中,可能是植物吸附与次生富集等所致,表明成土母质会显著影响土壤中硒的含量和分布[21-22]

图2

图2   不同地质背景土壤全硒分布特征

JY—蓟县系云梦山组;DQ—全新统;ES—二叠系石盒子组;DS—上更新统;XD—新近系大安组;XL—新近系洛阳组;JB—蓟县系北大尖组;DZ—中更新统;SL—三叠系刘家沟组;GC—古近系陈宅沟组;JC—蓟县系白草坪组;HX—寒武系辛集组

Fig.2   Distribution characteristics of total Se concentrations in soils from different parent materials

JY—Yunmengshan formation of Jixian system; DQ—Holocene series; ES—Shihezi formation of Permian system; DS—upper Pleistocene series; XD—Daan formation of Neogene system; XL—Luoyang formation of Neogene system; JB—Beidajian formation of Jixian system; DZ—middle Pleistocene series; SL—Liujiagou formation of Triassic system; GC—Chenzhaigou formation of Paleogene system; JC—Baicaoping formation of Jixian system; HX—Xinji formation of Cambrian system


3.1.3 不同类型土壤全硒分布特征

根据研究区土壤类型特征,对全区进行了子区划分,将土壤类型划分到土类。研究区共有红黏土、褐土、水稻土、潮土、粗骨土、紫色土、石质土、砂姜黑土8种类型。按土壤类型分别统计了土壤全硒含量,由图3可以看出,不同类型土壤的全硒含量差异显著,大小顺序依次为:砂姜黑土(0.38×10-6)>潮土(0.33×10-6)>石质土(0.31×10-6)>褐土(0.29×10-6)=粗骨土(0.29×10-6)>红黏土(0.27×10-6)>紫色土(0.26×10-6)>水稻土(0.25×10-6)。与全区土壤背景硒含量对比,砂姜黑土、潮土及石质土中全硒含量相对较高,是全区全硒含量均值的1.27、1.10及1.03倍,其余土壤类型的全硒含量略低于研究区背景值,尤其砂姜黑土中硒明显富集。有研究报道[21,23],土壤中腐殖质对硒有吸附作用,尤其砂姜黑土有机质含量高、质地较黏重,对硒的吸附作用远大于淋溶作用导致硒元素富集。研究区土壤类型以褐土、潮土、红黏土和粗骨土为主,潮土中土壤中硒含量相对最高。潮土母质主要是第四纪黄土的河流冲积物,其次为各类岩石风化物的冲积物,主要分布在洛河、伊河、汝河两岸,说明土壤中硒含量与河流关系密切,河流长期搬运上游含硒物质,在下游沉淀富集。

图3

图3   不同类型土壤全硒分布特征

Fig.3   Distribution characteristics of total Se concentrations in different types of soils


3.1.4 不同土地利用方式土壤全硒分布特征

研究区采样土地利用类型分为果园、旱地、园地、林地、水浇地、水田等,其中以旱地和水浇地为主。按土地利用方式分别统计了土壤中全硒含量。由图4可以看出,不同土地利用类型的全硒含量有较大差异,大小顺序依次为:水田(0.37×10-6)>有林地(0.34×10-6)>水浇地(0.32×10-6)>旱地(0.29×10-6)>其他园地(0.28×10-6)>果园(0.26×10-6)=其他草地(0.26×10-6)>其他林地(0.22×10-6)。与全区土壤背景硒含量对比,水田、有林地及水浇地中全硒含量相对较高,是全区全硒含量均值的1.23、1.13及1.07倍。研究区水浇地和旱地面积占总耕地面积的89%,受人为活动影响较大,其他草地、其他林地等受人为活动影响较小,水浇地中全硒含量是旱地的1.10倍,分别是其他草地和其他林地的1.23和1.45倍。研究表明[20],人为活动影响强烈的耕地,土壤中硒以腐殖质为主,有利于植物吸收消耗,不利于土壤硒的富集;也有研究表明,东北耕地土壤硒含量高于其他土壤利用方式,土壤黏粒和有机质含量可造成耕地土壤硒的富集[24]。因此可以看出,人为活动的强弱或利用方式的不同,导致土壤质地、黏粒、有机质等发生变化,从而影响表层土壤中硒的富集。

图4

图4   不同土地利用方式土壤全硒分布特征

Fig.4   Distribution characteristics of total Se concentrations in soil under different land use patterns


3.1.5 不同酸碱性土壤全硒分布特征

研究区内土壤pH值范围为4.59 ~ 8.56,平均值为7.53;酸性、中性、碱性土壤样点数分别占总调查样点数的12.55%、14.29%和73.16%;多数土壤pH低于河南省土壤平均pH值8.07。研究区不同酸碱性土壤硒元素地球化学特征分布情况如图5所示。从图5可以看出,不同酸碱性土壤全硒含量有较大差异,大小顺序依次为:酸性土壤(0.33×10-6)>中性土壤(0.32×10-6)>碱性土壤(0.29×10-6),表明酸性土壤更有利于硒的富集,与龚仓等[23]研究四川成都唐昌镇土壤硒分布特征得出的结论一致。有研究结果表明[25-26],酸性和中性条件下,硒主要以亚硒酸盐的形式存在,迁移淋溶作用较弱;而碱性条件下,低价态的硒易被氧化为高价的硒酸盐,作物虽易吸收,但硒酸盐溶于水易流失,从而造成土壤中硒的含量低。

图5

图5   不同酸碱性土壤全硒分布特征

Fig.5   Distribution characteristics of total Se concentrations in acidic and alkaline soils


3.1.6 不同有机质含量土壤全硒分布特征

研究区内土壤有机质含量介于0.17%~17.43%,平均值为1.89%,与2019年河南全省土壤有机质平均含量相当。按土壤有机质等级划分,研究区内93%的土壤样品有机质含量处于中等及以上水平。不同有机质含量土壤硒元素地球化学特征分布情况如表2所示。可以看出,土壤有机质含量越高,土壤全硒含量越高,这表明土壤中有机质的增加有利于硒的聚集,也有研究表明有机质与微量元素可以发生络合反应而引起元素富集。研究证实[14,26],有机质对硒的影响主要表现为吸附和固定作用,有机质含量越丰富的土壤,对于土壤中硒的吸附能力也就越强,土壤中硒的含量也相对较高。统计结果显示,土壤全硒含量与土壤有机质含量呈现显著正相关(P<0.01),相关系数为0.718。硒是亲生物元素,在生物地球化学循环过程中发生次生富集或贫化作用,表层土壤中硒含量与有机质具有显著正相关关系;硒和有机质的相关性被认为硒能够与腐殖质结合固定在土壤中[27]

表2   不同有机质含量土壤全硒分布特征

Table 2  Distribution characteristics of Se concentrations in soils with different organic matter contents

丰缺等级有机质/%样本数最小值/10-6最大值/10-6平均值/10-6标准差/10-6
极高>4.00510.3115.6700.8020.789
3.01~4.001680.2531.6600.4890.188
中上2.01~3.0019630.1711.3330.3500.088
1.01~2.0032040.0661.1660.2690.062
0.60~1.002790.0580.4430.1380.046
极低<0.601290.0330.2070.0830.033

新窗口打开| 下载CSV


3.2 土壤有效态硒分布特征

土壤全硒含量并不能很好地反映土壤硒资源的生物有效性,常用土壤有效态硒含量丰度来体现土壤对作物硒的供给能力。调查全区土壤有效态硒含量范围介于(4.10~81.00)×10-9,平均含量为11.56 ×10-9。按土壤类型分别统计了土壤有效态硒含量(图6),可以看出,不同类型土壤的有效态硒含量差异显著,大小顺序依次为:潮土(15.40×10-9)>褐土(12.49×10-9)>砂姜黑土(12.00×10-9)>粗骨土(7.03×10-9)>红黏土(6.66×10-9)。与全区土壤有效态硒含量对比,潮土、褐土及砂姜黑土中有效态硒含量相对较高,是全区有效态硒含量均值的1.33、1.08及1.04倍。统计结果表明,土壤有效态硒含量与全硒、pH和有机质的相关系数分别为0.543、0.471和0.270。相关研究证实[25,28],土壤pH可通过改变土壤硒的形态和价态间接改变土壤硒的迁移转化能力,进而影响硒元素的生物有效性。在酸性条件下,土壤中H+增加的同时,减少了土壤表面的负电荷,使得以阴离子形式存在的亚硒酸根易形成可溶性金属络合物;次生铝矿物的溶出与亚硒酸根易结合形成复杂的络合物,从而降低硒的有效性和迁移性,不易被植物吸收。碱性条件下,氢氧化铁可取代吸附位点上的亚硒酸根离子,使其进入土壤水溶液,从而增加硒的有效性和迁移性,增加作物的吸收。

图6

图6   不同类型土壤有效态硒分布特征

Fig.6   Distribution characteristics of bioavailable Se concentrations in different types of soils


3.3 土壤硒形态分布特征

3.3.1 不同酸碱性土壤硒形态分布特征

土壤中硒的形态按浸提的难易程度分为水溶态、离子交换态、碳酸盐结合态、腐殖酸结合态、铁锰氧化态、强有机结合态和残渣态,其被植物吸附利用的难易程度也依次增加。比较不同酸碱性土壤硒各形态分布特征如图7所示。硒在土壤中的3种主要赋存形态是残渣态、强有机结合态和腐殖酸结合态;酸性、中性和碱性土壤中硒的这3种形态之和(F4+F6+F7)分别占全量的96.72%、94.89%和92.34%;土壤中铁锰氧化态硒分别占总量的1.37%、2.07%和2.14%;水溶态、离子交换态和碳酸盐结合态3种形态之和(F1+F2+F3)分别占全量的1.91%、3.04%和5.51%,这表明硒在土壤中的生物可利用性较低。从酸碱性来看,残渣态硒占全硒比例表现为中性土壤>碱性土壤>酸性土壤;另外,除强有机结合态硒以外,其他各形态硒占全硒比例均表现为碱性土壤>中性土壤>酸性土壤。这与相关研究结果不尽一致[25-26,29],土壤中植物可利用态硒的含量随着土壤pH值的升高呈现增加的趋势。相关研究也证实,土壤中铁锰水合氧化物对阴离子型的硒酸盐的吸附能力随pH的升高的降低,即在偏酸性条件下[5,30],铁锰水合氧化物胶体带正电,有利于吸附阴离子,而在偏碱性条件下,铁锰水合氧化物胶体带负电,对阴离子型硒酸盐不具备吸附效果。

图7

图7   不同酸碱性土壤硒形态百分比含量

Fig.7   Fractions of Se in acidic and alkaline soils


3.3.2 不同类型土壤硒形态分布特征

根据研究区土壤类型特征,选取分布较为广泛的潮土、粗骨土、褐土、红黏土、砂姜黑土和水稻土等6个单元,进行不同类型土壤中硒形态分析(图8)。可以看出,不同类型土壤中硒主要以残渣态、强有机结合态和腐殖酸结合态3种形态存在,3种形态之和(F4+F6+F7)占土壤全硒比例由大到小的顺序依次为:潮土>砂姜黑土>粗骨土>褐土>水稻土>红黏土,水溶态、离子交换态和碳酸盐结合态3种形态之和(F1+F2+F3)占土壤全硒比例由大到小的顺序依次为:红黏土>水稻土>褐土>粗骨土>砂姜黑土>潮土。由此可见,红黏土和水稻土中生物可利用态硒含量较高。现场调查发现,红黏土和水稻土富硒分布区内,土壤呈碱性,由于红黏土和水稻土通透性差,不利于元素向深部迁移,表层土壤有机质含量与硒均呈现表层富集现象,这与人类施肥耕作活动、生物作用积累密切相关。砂姜黑土和潮土中生物可利用态态硒含量相对较低,其土壤呈碱性,但由于土壤松散,在淋溶作用下使硒元素发生向下迁移,从而降低了表层土壤生物可利用态硒的含量。

图8

图8   不同类型土壤硒形态百分比含量

Fig.8   Fractions of Se in different types of soils


4 结论

1)研究区内土壤全硒含量范围为(0.03~5.67)×10-6,平均含量为0.30×10-6,表层土壤硒的平均含量高于伊洛河流域、河南省及中国表层土壤平均值,富硒土地资源丰富,适量和高硒土壤面积分别占总调查面积的86.17%和8.56%。

2)土壤地质背景、类型、利用方式、酸碱性及有机质不同,对硒的富集程度也不同。蓟县系云梦山组土壤硒平均含量最高,寒武系辛集组土壤硒平均含量最低;土壤类型中,硒元素含量表现为砂姜黑土>潮土>石质土>褐土=粗骨土>红黏土>紫色土>水稻土;土地利用方式中,硒元素含量表现为水田>有林地>水浇地>旱地>其他园地>果园=其他草地>其他林地;土壤酸碱性中,硒元素含量表现为酸性土壤>中性土壤>碱性土壤;土壤有机质含量越高,土壤全硒含量越高,土壤有机质对硒具有较强的吸附和固定作用。

3)土壤有效态硒含量范围介于(4.10~81.00)×10-9,平均含量为11.56×10-9;不同类型土壤的有效态硒含量表现为潮土>褐土>砂姜黑土>粗骨土>红黏土;土壤有效硒含量与全硒和pH呈显著正相关关系。

4)硒在土壤中主要以残渣态、强有机结合态和腐殖酸结合态3种形态存在,而水溶态、离子交换态、碳酸盐结合态和铁锰氧化态占全硒比例较低;土壤酸碱性中,生物可利用态硒含量表现为碱性土壤>中性土壤>酸性土壤;土壤类型中,生物可利用态硒含量表现为红黏土>水稻土>褐土>粗骨土>砂姜黑土>潮土。

参考文献

Mao J, Pop V J, Bath S C, et al.

Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency

[J]. European Journal of Nutrition, 2016, 55 (1):55-61.

DOI:10.1007/s00394-014-0822-9      PMID:25524327      [本文引用: 1]

Selenium is an essential trace mineral and a component of selenoproteins that are involved in the production of thyroid hormones and in regulating the immune response. We aimed to explore the effect of low-dose selenium supplementation on thyroid peroxidase antibody (TPO-Ab) concentration and thyroid function in pregnant women from a mild-to-moderate iodine-deficient population.Samples and data were from a secondary analysis of Selenium in PRegnancy INTervention (SPRINT), a double-blind, randomized, placebo-controlled study that recruited 230 women with singleton pregnancies from a UK antenatal clinic at 12 weeks of gestation. Women were randomized to receive 60 µg/day selenium or placebo until delivery. Serum thyroid peroxidase antibodies (TPO-Ab), thyrotropin (TSH) and free thyroxine (FT4) were measured at 12, 20 and 35 weeks and thyroglobulin antibodies (Tg-Ab) at 12 weeks.93.5% of participants completed the study. Se supplementation had no more effect than placebo in decreasing TPO-Ab concentration or the prevalence of TPO-Ab positivity during the course of pregnancy. In women who were either TPO-Ab or Tg-Ab negative at baseline (Thy-Ab(-ve)), TSH increased and FT4 decreased significantly throughout gestation (P < 0.001), with no difference between treatment groups. In women who were Thy-Ab(+ve) at baseline, TSH tended to decrease and was lower than placebo at 35 weeks (P = 0.050). FT4 fell more on Se than placebo supplementation and was significantly lower at 35 weeks (P = 0.029).Low-dose selenium supplementation in pregnant women with mild-to-moderate deficiency had no effect on TPO-Ab concentration, but tended to change thyroid function in Thy-Ab(+ve) women.

Li Z, Liang D L, Peng Q, et al.

Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability:A review

[J]. Geoderma, 2017, 295:69-79.

DOI:10.1016/j.geoderma.2017.02.019      URL     [本文引用: 1]

Schwarz K, Foltzs C M.

Selenium as an integral part of factor 3 against dietary necrotic liver degeneration

[J]. Nutrition, 2002, 79(12):3292-3293.

[本文引用: 1]

Shi Z M, Pan P J, Feng Y W, et al.

Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan,China

[J]. Environment International, 2017, 99:282-292.

DOI:10.1016/j.envint.2016.12.006      URL     [本文引用: 1]

周越, 吴文良, 孟凡乔, .

土壤中硒含量、形态及有效性分析

[J]. 农业资源与环境学报, 2014, 31(6):527-532.

[本文引用: 2]

Zhou Y, Wu W L, Meng F Q, et al.

Review on the content,specification of selenium and its availability in soil

[J]. Journal of Agricultural Resources and Environment, 2014, 31(6):527-532.

[本文引用: 2]

Preedy V R. Selenium:Chemistry,Analysis, Function and Effects[M]. London: Royal Society of Chemistry, 2015.

[本文引用: 1]

邢润华.

安徽省宣城市土壤硒地球化学特征及成因分析

[J]. 物探与化探, 2022, 46(3):750-760.

[本文引用: 1]

Xing R H.

Geochemical characteristics and genesis of selenium in soil in Xuancheng City,Anhui Province

[J]. Geophysical and Geochemical Exploration, 2022, 46(3):750-760.

[本文引用: 1]

Tan L C, Nancharaiah Y V, Hullebusch E V, et al.

Selenium:Environmental significance,pollution,and biological treatment technologies

[J]. Biotechnology Advances, 2016, 34(5):886-907

DOI:10.1016/j.biotechadv.2016.05.005      URL     [本文引用: 1]

Panchal S K, Wanyonyi S, Brown L.

Selenium,vanadium,and chromium as micronutrients to improve metabolic syndrome

[J]. Current Hypertension Reports, 2017, 19(3):10.

DOI:10.1007/s11906-017-0701-x      PMID:28197835      [本文引用: 1]

Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.

彭晓敏, 高愈希.

自然界中的硒及其生物学效应

[J]. 化学教育, 2019, 40(17):1-8.

[本文引用: 1]

Peng X M, Gao Y X.

Selenium in nature and its biological effects

[J]. Chinese Journal of Chemical Education, 2019, 40(17):1-8.

[本文引用: 1]

周国华.

富硒土地资源研究进展与评价方法

[J]. 岩矿测试, 2020, 39(3):319-336.

[本文引用: 1]

Zhou G H.

Research progress of selenium-enriched land resources and evaluation methods

[J]. Rock and Mineral Analysis, 2020, 39(3):319-336.

[本文引用: 1]

Wang J, Li H R, Yang L S, et al.

Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area

[J]. Environmental Geochemistry and Health, 2017, 39(1):221-229.

DOI:10.1007/s10653-016-9823-3      PMID:27071616      [本文引用: 1]

Kashin-Beck disease (KBD), which is still active and severe in the Tibetan Plateau, is considered to be a kind of selenium (Se)-deficient disease. Highland barley as the most popular staple food in the Tibetan Plateau is one of the dominant Se sources for local people. To improve Se levels in crops in the Tibetan Plateau KBD area, the distribution and translocation of Se from soil to highland barley in both non-KBD and KBD endemic areas were investigated. The results showed that Se levels in highland barley were too low to meet the minimum requirements of human for daily intake of Se. The total Se concentrations of highland barley fractions in KBD areas were lower than that in non-KBD areas (grain P = 0.238; straw P = 0.087; root P = 0.008). However, no significant difference was observed in corresponding cultivated soil Se between the two areas (P = 0.993). The calculation of Se transfer factors indicated that the restricting step for Se translocation was from soil to root. Water-soluble, exchangeable and fulvic acid-bound Se fractions in the soil are key species dominating in this transfer process, according to their significant correlations with root Se. Se transfer from soil to root significantly increases as the pH value of soil increases (P = 0.007), and soil organic matter content decreases (P = 0.019). The information obtained may have considerable significance for proposing effective agricultural measures to increase grain Se in KBD endemic areas.

Ullah H, Liu G, Yousaf B, et al.

Developmental selenium exposure and health risk in daily foodstuffs:A systematic review and meta-analysis

[J]. Ecotoxicology and Environmental Safety, 2018, 149,291-306.

DOI:10.1016/j.ecoenv.2017.11.056      URL     [本文引用: 1]

谢薇, 杨耀栋, 侯佳渝, .

天津市蓟州区土壤硒的有效性及影响因素

[J]. 环境化学, 2019, 38(10):2306-2316.

[本文引用: 2]

Xie W, Yang Y D, Hou J Y, et al.

Bioavailability of selenium and its influencing factors in soil of Jizhou District,Tianjin

[J]. Environmental Chemistry, 2019, 38(10):2306-2316.

[本文引用: 2]

唐世琪, 刘秀金, 杨珂, .

典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价

[J]. 环境科学, 2021, 42(8):3913-3923.

[本文引用: 1]

Tang S Q, Liu X J, Yang K, et al.

Migration,transformation characteristics,and ecological risk evaluation of heavy metal fractions in cultivated soil profiles in a typical carbonate-covered area

[J]. Environmental Science, 2021, 42(8):3913-3923.

[本文引用: 1]

侯青叶, 杨忠芳, 余涛, . 中国土壤地球化学参数[M]. 北京.地质出版社, 2020:26-41,17.

[本文引用: 4]

Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing.Geological Press, 2020:26-41,17

[本文引用: 4]

Donald J L.

Trace metals in soils,plants and animals

[J]. Advances in Agronomy, 1972, 24:267-325.

[本文引用: 2]

Forgyce F M.

Selenium deficiency and toxicity in the environment

[J]. Essentials of Medical Geology, 2013, 5:375-416.

[本文引用: 1]

杨琼, 侯青叶, 顾秋蓓, .

广西武鸣县典型土壤剖面Se的地球化学特性及其影响因素研究

[J]. 现代地质, 2016, 30(2):455-462.

[本文引用: 1]

Yang Q, Hou Q Y, Gu Q B, et al.

Study of geochemical characteristics and influencing factors of soil selenium in the typical soil profiles in Wuming county of Guangxi

[J]. Geoscience, 2016, 30(2):455-462.

[本文引用: 1]

<p>In this paper, the typical soil profiles of carbonate rock and terrigenous clastic rock in Wuming County of Guangxi were chosen as our investigative objects. The vertical migration and influencing factors of the selenium chemical speciation in soil formation process were studied. The results showed that the soil selenium content was inherited from the parent materials, with average values of 0.55 mg/kg and 1.43 mg/kg respectively; and the selenium content of the carbonate rock was enriched significantly in the surface soil, but relatively stable in the terrigenous clastic rock. The total water soluble selenium content of the carbonate rock was higher than that in the terrigenous clastic rock, with arithmetic average values of 3.48 &mu;g/kg and 1.81 &mu;g/kg respectively, and they were both given priority to with selenate, followed by selenite and humic acid combined with selenium. The results showed that the contents and chemical speciations of selenium in soil profiles originated from the carbo-nate rock were mainly dominated by the total organic carbon (TOC) contents and pH values, while of which originated from the terrigenous clastic rock were controlled by the pH values, the contents of TOC, aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), iron oxide (Fe<sub>2</sub>O<sub>3</sub>) and soil texture.</p>

张春来, 杨慧, 黄芬, .

广西马山县岩溶区土壤硒含量分布及影响因素研究

[J]. 物探与化探, 2021, 45(6):1497-1503.

[本文引用: 2]

Zhang C L, Yang H, Huang F, et al.

Distribution and influencing factors of selenium content in soil in Karst areas in Mashan county,Guangxi,China

[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1497-1503.

[本文引用: 2]

毛香菊, 刘璐, 程新涛, .

河南新密典型富硒区土壤Se元素地球化学特征及空间分布规律

[J]. 地质通报, 2021, 40(10):1664-1670.

[本文引用: 3]

Mao X J, Liu L, Cheng X T, et al.

Geochemical characteristics and spatial distribution of soil Se elements in typical Se-enriched areas in Xinmi,Henan

[J]. Geological Bulletin, 2021, 40(10):1664-1670.

[本文引用: 3]

张建东, 王丽, 王浩东, .

紫阳县土壤硒的分布特征研究

[J]. 土壤通报, 2017, 48(6):1404-1408.

[本文引用: 1]

Zhang J D, Wang L, Wang H D, et al.

Study on the distribution characteristics of soil selenium in Ziyang County

[J]. Soil Bulletin, 2017, 48(6):1404-1408.

[本文引用: 1]

龚仓, 王亮, 王顺祥, .

四川成都市唐昌镇土壤硒分布特征及影响因素

[J]. 土壤学报, 2022, 41(3):473-450.

[本文引用: 2]

Gong C, Wang L, Wang S X, et al.

Characteristics and influencing factors of soil selenium distribution in Tangchang Town,Chengdu,Sichuan

[J]. Soil Journal, 2022, 41(3):473-450.

[本文引用: 2]

戴慧敏, 宫传东, 董北, .

东北平原土壤硒分布特征及影响因素

[J]. 土壤学报, 2015, 52(6):1356-1364.

[本文引用: 1]

Dai H M, Gong C D, Dong B, et al.

Distribution of soil selenium in the Northeast China plant and its influencing factors

[J]. Acta Pedologica Sinica, 2015, 52(6):1356-1364.

[本文引用: 1]

梁东丽, 彭琴, 崔泽玮, .

土壤中硒的形态转化及其对有效性的影响研究进展

[J]. 生物技术进展, 2017, 7(5):374-380.

DOI:10.19586/j.2095-2341.2017.0086      [本文引用: 3]

在对一些典型地区环境硒调研的基础上,系统研究了硒在土壤中形态和价态转化,探讨了硒在土壤固液相中的分配及其与土壤性质的关系;明确了土壤中硒的转化对其生物有效性的影响;系统归纳了硒的形态、土壤性质、植物的品种和种类等影响硒有效性的因素;建立了将形态和价态相结合的土壤硒形态测定方法,并对测定硒有效性的化学浸提法和梯度扩散薄膜技术(DGT)进行了比较。最后,提出了相关研究未来的发展方向。

Liang D L, Peng Q, Cui Z W, et al.

Progress on selenium bioavailibility and influential factors in soil

[J]. Current Biotechnology, 2017, 7(5):374-380.

DOI:10.19586/j.2095-2341.2017.0086      [本文引用: 3]

Based on the investigation of selenium (Se) bioavailability in some Chinese typical areas, transformation processes of Se speciation and fractions in soil were systematically studied, and their effects on bioavailability were clarified. The factors affecting the bioavailability of Se in soil-plant system were discussed, including the speciation of Se, soil properties, plant types and varieties. A method for determination of Se fractions and valences was set up. The differences of chemical extracting method and diffusive gradients in thin-films (DGT) for determination bioavailability of Se in soil were also compared. Finally, this paper made a forecast of the future development for related researches.

王志强, 杨建锋, 魏丽馨, .

石嘴山地区碱性土壤硒地球化特征及生物有效性

[J]. 物探与化探, 2022, 46(1):229-237.

[本文引用: 3]

Wang Z Q, Yang J F, Wei L X, et al.

Geochemical characteristics and bioavailability of selenium in alkaline soil in Shizuishan area,Ningxia

[J]. Geophysical and Geochemical Exploration, 2022, 46(1):229-237.

[本文引用: 3]

杨忠芳, 余涛, 侯青叶, .

海南岛农田土壤Se的地球化学特征

[J]. 现代地质, 2012, 26(5):837-849.

[本文引用: 1]

Se是人和动物必需的微量元素之一,具有广阔的开发应用前景,研究土壤中Se的地球化学分布规律和生物有效性控制因素意义重大。系统总结了海南岛27 426 km<sup>2</sup>范围内土壤Se的含量特征和影响因素。结果表明,研究区69.98%土地面积为足硒和富硒土壤,表层土壤Se含量在一定程度上继承了成土母岩(或深层土壤)Se含量,但不同成土母岩形成的表层土壤Se含量富集贫化趋势不同。进一步研究显示,土壤中Se含量与有机碳、Al<sub>2</sub>O<sub>3</sub>、TFe<sub>2</sub>O<sub>3</sub>、Mn和CIA等具有显著的正相关关系,说明土壤中粘土矿物、有机碳、铁锰氧化物及风化淋溶程度对Se的地球化学行为有重要影响,同时这些指标又是影响土壤Se生物有效性的重要参数。土壤有机碳、粘粒、CEC等含量或指标越高,Se的生物有效性越低。研究区土壤pH>6.5时,土壤Se含量较低;土壤pH<6.5时,土壤Se含量随pH下降而增加;当土壤pH为5.5~7.5时,土壤Se生物有效性相对较高。因此,开发富硒农产品不但要依据土壤总Se含量,还必须考虑土壤pH、TOC、CEC、粘粒等指标含量。

Yang Z F, Yu T, Hou Q Y, et al.

Geochemical characteristics of soil selenium in farmland of Hainan island

[J]. Geoscience, 2012, 26(5):837-849.

[本文引用: 1]

李永华, 王五一.

硒的土壤环境化学研究进展

[J]. 土壤通报, 2002, 33(3):230-233.

[本文引用: 1]

Li Y H, Wang W Y.

Process on the study soil environmental chemistry of selenium

[J]. Chinese Journal of Soil Science, 2002, 33(3):230-233.

[本文引用: 1]

陈继平, 任蕊, 王晖, .

关中塿土地区土壤pH变化对硒形态及其有效性的影响

[J]. 西北地质, 2020, 53(1):244-260.

[本文引用: 1]

Chen J P, Ren X, Wang H, et al.

Effect of Lou soil pH change on selenium forms and availability

[J]. Northwestern Geology, 2020, 53(1):244-260.

[本文引用: 1]

瞿建国, 徐伯兴, 龚书椿.

上海不同地区土壤中硒的形态分布及其有效性研究

[J]. 土壤学报, 1998(3):398-403.

[本文引用: 1]

Qu J G, Xu B X, Gong S C.

Study on speciation distribution and availability of selenium in different soils of Shanghai

[J]. Acta Pedologica Sinica, 1998(3):398-403.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com