Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1273-1280    DOI: 10.11720/wtyht.2023.1414
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
超声平面阵全聚焦三维成像方法
张邦()
中铁第四勘察设计院集团有限公司,湖北 武汉 430063
Three-dimensional imaging based on the ultrasonic planar array-total focusing method
ZHANG Bang()
China Railway Siyuan Survey and Design Group Group Co.,Ltd.,Wuhan 430063,China
全文: PDF(3504 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对全矩阵—全聚焦成像数据量大与后处理效率低的问题,提出使用平面阵全聚焦(PATFM)方法对平面阵数据进行成像。通过分析全聚焦成像算法特点,结合体平面阵波场特征,使用程函方程计算下行平面阵波前时间,基于延时叠加原理,利用上下行超声波传播时间改进全聚焦成像公式,针对平面阵推导指向性和扩散校正系数,对平面阵下方较大范围的成像点进行聚焦成像。利用FieldⅡ仿真,对比了相控扫描成像、全矩阵数据采集与全聚焦成像以及平面波数据采集与全聚焦成像3种成像方法。结果表明,平面阵全聚焦成像方法可以对单次平面阵数据进行大范围聚焦成像,在获得相应精度的同时,大大提高了计算效率,为阵列式声波三维成像提供了可行的技术手段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张邦
关键词 全聚焦平面阵程函方程校正三维    
Abstract

Given large data volumes and low post-processing efficiency of full matrix capture-total focusing imaging,this study proposed a planar array-total focusing method(PATFM) for the imaging of planar array data.First,the wave front time of the downgoing planar array was calculated using the eikonal equation based on the characteristics of both the total focusing imaging algorithm and the planar array wave field.Then,the total focusing imaging formula was improved using the upgoing and downgoing ultrasonic propagation time based on the delay superposition principle.Finally,focusing imaging was performed on a wide range of imaging points below the planar array aiming at the derived directivity and diffusion correction coefficient of the planar array.Through Field II simulation,the PATFM was compared with three imaging methods,including phase-controlled scanning imaging,full matrix capture-based total focusing imaging,and plane wave capture-based total focusing imaging.The results show that the PATFM can be used for large-range focusing imaging of single planar array data,greatly improving the computational efficiency while obtaining corresponding accuracy.Therefore,this study provides a feasible technical means for 3D imaging of array acoustic waves.

Key wordstotal fousing    planar array    eikonal equation    correction    3D
收稿日期: 2022-10-14      修回日期: 2023-08-08      出版日期: 2023-10-20
ZTFLH:  P631.4  
基金资助:湖北省重点研发项目(2021BAA050);中铁第四勘察设计院集团有限公司重点研发项目(2020K37)
作者简介: 张邦(1991-),男,工程师,毕业于长安大学,主要从事铁路工程无损检测研究工作。Email:zhangbang@crfsdi.com
引用本文:   
张邦. 超声平面阵全聚焦三维成像方法[J]. 物探与化探, 2023, 47(5): 1273-1280.
ZHANG Bang. Three-dimensional imaging based on the ultrasonic planar array-total focusing method. Geophysical and Geochemical Exploration, 2023, 47(5): 1273-1280.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1414      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1273
Fig.1  全矩阵采集示意
Fig.3  全聚焦成像示意[14]
Fig.4  平面阵激发波场快照切片
Fig.5  FMM波前传播示意
Fig.6  平面波传播等时面切片 a—垂直切片;b—水平切片
Fig.7  平面波全聚焦成像示意
Fig.8  线阵复合平面阵
Fig.9  Field Ⅱ 仿真三维成像切片
a—相控扫描成像剖面;b—双全法成像剖面;c—平面阵全聚焦成像剖面
Fig.10  全聚焦三维成像
a—三维模型;b—双全法三维成像;c—平面阵全聚焦三维成像
项目 全矩阵—全聚焦
FMC-TFM
平面阵—全聚焦
PA-TFM
采集次数 49 1
数据量/KB 46894.5 957
聚焦耗时/s 1195.8 94.6
Table 1  全矩阵全聚焦成像与平面阵全聚焦成像对比
Fig.11  16×16平面阵全聚焦成像剖面
[1] 李衍. 超声相控阵与全聚焦法成像特性比照评析[J]. 无损探伤, 2021, 45(1):1-6.
[1] Li Y. Comparative analysis of imaging characteristics of ultrasonic phased array and total focusing method[J]. Nondestructive Testing Technology, 2021, 45(1):1-6.
[2] 章东, 桂杰, 周哲海. 超声相控阵全聚焦无损检测技术概述[J]. 声学技术, 2018, 37(4):320-325.
[2] Zhang D, Gui J, Zhou Z H. A review of total focusing method for ultrasonic phased array imaging[J]. Technical Acoustics, 2018, 37(4):320-325.
[3] 黄文大, 李衍. 全矩阵捕获和全聚焦法相控阵成像检测技术[J]. 无损检测, 2021, 43(11):72-78.
doi: 10.11973/wsjc202111015
[3] Huang W D, Li Y. FMC and TFM phased array imaging detection technology[J]. Nondestructive Testing, 2021, 43(11):72-78.
doi: 10.11973/wsjc202111015
[4] 张经科, 何琼, 罗建文. 平面波超声成像中的波束合成方法研究进展[J]. 应用声学, 2021, 40(1):22-32.
[4] Zhang J K, He Q, Luo J W. Research progress of beamforming methods in plane-wave ultrasound imaging[J]. Journal of Applied Acoustics, 2021, 40(1):22-32.
[5] Vignon F, Burcher M R. Capon beamforming in medical ultrasound imaging with focused beams[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(3):619-628.
doi: 10.1109/TUFFC.2008.686 pmid: 18407851
[6] Chau G, Lavarello R, Dahl J. Short-lag spatial coherence weighted minimum variance beamformer for plane-wave images[C]// IEEE International Ultrasonics Symposium,IUS,IEEE, 2016.
[7] Lokesh B, Thittai A K. Spatial resolution improvement in plane wave imaging using adaptive sign coherence factor weighting[C]// IEEE International Ultrasonics Symposium,IUS,IEEE, 2016.
[8] Moubark A M, Alomari Z, Harput S, et al. Enhancement of contrast and resolution of B-mode plane wave imaging (PWI) with non-linear filtered delay multiply and sum (FDMAS) beamforming[C]// IEEE International Ultrasonics Symposium,IUS, 2016.
[9] Zhang B, Robert J L, David G. Dual-domain compressed beamforming for medical ultrasound imaging[C]// 2015 IEEE International Ultrasonics Symposium,IUS, 2015.
[10] Besson A, Perdios D, Martinez F, et al. Ultrafast ultrasound imaging as an inverse problem:Matrix-free sparse image reconstruction[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2018, 65(3):339-355.
doi: 10.1109/TUFFC.2017.2768583
[11] Wiacek A, Gonzalez E, Bell M A L. CohereNet:A deep learning architecture for ultrasound spatial correlation estimation and coherence-based beamforming[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2020, 67(12):2574-2583.
doi: 10.1109/TUFFC.58
[12] Hyun D, Brickson L L, Looby K T, et al. Beamforming and speckle reduction using neural networks[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,IEEE, 2019, 66(5):898-910.
[13] Zhang X, Liu J, He Q, et al. High quality reconstruction of plane-wave imaging using generative adversarial network[C]// IEEE International Ultrasonics Symposium,IUS, 2018.
[14] 张杰, 莫润阳. 超声相控阵全聚焦成像算法比较分析[J]. 声学技术, 2021, 40(1):71-76.
[14] Zhang J, Mo R Y. Comparative analysis of total focusing method in ultrasonic array imaging algorithms[J]. Technical Acoustics, 2021, 40(1):71-76.
[15] 李永博. VTI介质及复杂模型FMM射线追踪方法研究[D]. 西安: 长安大学, 2012.
[15] Li Y B. Study on FMM ray tracing method for VTI media and Complex Model[D]. Xi'an: Chang'an University, 2012.
[16] 周正干, 彭地, 李洋, 等. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51(10):1-7.
[16] Zhou Z G, Peng D, Li Y, et al. Research on phased array ultrasonic total focusing method and its calibration[J]. Journal of Mechanical Engineering, 2015, 51(10):1-7.
[17] 巩建辉, 严碧歌. 线阵组合平面阵的指向性研究[J]. 南阳师范学院学报, 2011, 10(6):21-24.
[17] Gong J H, Yan B G. Research on directivity of linear array combined with planar array[J]. Journal of Nanyang Normal University, 2011, 10(6):21-24.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 刘汉卿, 罗明, 何叶, 陈维涛. 番禺A地区时深转换速度精细研究及应用[J]. 物探与化探, 2023, 47(4): 1056-1063.
[3] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[4] 耿涛. 地面高精度磁测野外工作中仪器校正点使用的常见问题及应对方法[J]. 物探与化探, 2023, 47(4): 1078-1082.
[5] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[6] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[7] 张菲菲, 王万银, 李倩, 王林, 马静. DEM网格间距及校正半径对重力地形校正的影响[J]. 物探与化探, 2023, 47(3): 597-607.
[8] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[9] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[10] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[11] 汪文刚, 李凯. 基于GOCAD软件的多源地质勘探数据接口开发[J]. 物探与化探, 2022, 46(6): 1534-1539.
[12] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[13] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
[14] 饶荣富, 苏本玉. 直流电阻率法与工作面透明化[J]. 物探与化探, 2022, 46(3): 563-569.
[15] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com