Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (4): 748-752    DOI: 10.11720/wtyht.2017.4.26
  本期目录 | 过刊浏览 | 高级检索 |
含泥质致密砂岩储层三孔隙导电模型
夏培
国家知识产权局专利局 专利审查协作湖北中心,湖北 武汉 430070
A triple-porosity conducting model for shaly tight sandstone reservoir
XIA Pei
Patent Examination Cooperation Hubei Center of The Patent Office,Wuhan 430070,China
全文: PDF(924 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 泥质的存在及复杂的孔隙结构导致致密砂岩储层导电规律的复杂性,给其饱和度评价带来了极大的困难,而储层饱和度评价的关键在于岩电参数的准确获取。前人关于储层胶结指数m的研究大多侧重于复杂孔隙结构的影响,对泥质影响则涉及较少。笔者基于Waxman-Smith泥质砂岩导电模型及Aguilera三孔隙导电模型,利用串并联导电理论建立了含泥质致密砂岩三孔隙导电模型,提出了准确描述由泥质、裂缝、非连通孔洞构成的致密砂岩导电规律的方法。采用单因素分析法研究泥质及复杂孔隙结构对胶结指数m的影响,发现m随着裂缝孔隙度的增大而减小,随着孤立孔洞孔隙度的增大而增大,随着泥质含量的增大而减小。岩芯实验数据验证表明,文中给出的模型能够准确描述含泥质致密砂岩储层的导电规律以及定量评价胶结指数m
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The existence of shale and complex pore structure leads to complexity of electric conductance law in shaly tight sandstone,making it extremely difficult to quantitatively evaluate resistivity and saturation of shaly tight sandstone reservoir.The key to reservoir resistivity evaluation is the accurate acquisition of Archie exponent.Many researchers have studied triple porosity exponent m,most of these researches focus on the impact of complex pore structure without taking shale affect into consideration.In this paper,based on Waxman-Smith shaly sandstone model and Aguilera triple porosity model,the authors propose a new triple porosity conducting model for shaly tight sandstone,which is composed of shale,fractures and non-connected vugs.In the model the effects of shale and complex pore structure on porosity exponent m are considered.By single factor analysis,it is found that triple porosity exponent m decreases as fracture porosity increases,increases as non-connected vug porosity increases,and decreases as shale content increases.The validation of experiment data proves that the proposed model can accurately describe the electrical conducting law of shaly tight sandstone and can quantitatively evaluate the porosity exponent m.
收稿日期: 2016-09-02      出版日期: 2017-08-20
:  P631.4  
作者简介: 夏培(1989-),男,湖北武汉人,硕士研究生,毕业于中国石油大学(北京)地球探测与信息技术(测井方向)专业,现工作于国家知识
引用本文:   
夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017, 41(4): 748-752.
XIA Pei. A triple-porosity conducting model for shaly tight sandstone reservoir. Geophysical and Geochemical Exploration, 2017, 41(4): 748-752.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.4.26      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I4/748
[1] 石玉江,时卓.苏里格气田致密气层测井精细建模方法[J].西南石油大学学报:自然科学版,2012,34(5):71-76.
[2] Alexandra N G.3D porosity and mineralogy characterization in tight gas sandstones [J].The Leading Edge,2010,29(12):1477-1483.
[3] 张明禄,石玉江.复杂孔隙结构砂岩储层岩电参数研究[J].测井技术,2005,29(5):446-448.
[4] Towle G.An analysis of the formation resistivity factor-porosity relationship of some assumed pore geometries[C]//Trans:SPWLA Logging Symposium,1962.
[5] Aguilera R.Analysis of naturally fractured reservoirs from conventional well logs[J].Journal of Petroleum Technology,1976,28(7):764-772.
[6] Serra O.Formation microscanner image interpretation[C] //Houston:Schlumberger Educational Service,1989.
[7] Aguilera M S,Aguilera R.Improved models for petrophysical analysis of dual porosity reservoirs [J].Petrophysics,2003,44(1):21-35.
[8] Aguilera R F,Aguilera R.A triple porosity model for petrophysical analysis of naturally fractured reservoirs [J].Petrophysics,2004,45(2):157-166.
[9] Al-Ghamdi,Behmanesh H.An improved triple-porosity model for evaluation of naturally fractured reservoirs[C]//SPE reservoir Evaluation & Engineering,2011.
[10] 张丽华,潘保芝,单刚义.应用三重孔隙模型评价火成岩储层[J].测井技术,2008,32 (1):37-40.
[11] Breg C R.Dual porosity equations from effective medium theory[C]//SPE Annual Technical Conference and Exhibition,2006.
[12] 田瀚,杨敏.碳酸盐岩缝洞型储层测井评价方法[J].物探与化探,2015,39 (3):545-552.
[13] Waxman M H,Smits L J M.Electrical conductivities in oil-bearing shaly sands [J].Society of Petroleum Engineers Journal,1968,243(6):107-122.
[14] Archie G E.The electrical resistivity log as an aid in determining some reservoir characteristics [J].Transactions of the AIME,1942,146:54-67.
[15] Byrnes A P,Cluff R.Analysis of critical permeablity,capillary pressure and electrical properties for mesaverde tight gas sandstones from western U.S. basins[M].Office of Fossil Energy,2009.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com