Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 1088-1094    DOI: 10.11720/wtyht.2021.0067
  工程勘查 本期目录 | 过刊浏览 | 高级检索 |
井间电磁波CT在煤矿采空区探测效果分析
赵旭辰1(), 李雪健2, 曹芳智3, 雷晓东1(), 李晨1, 韩宇达1
1.北京市地质勘察技术院,北京 100120
2.神华宝日希勒能源有限公司,内蒙古 呼伦贝尔 021025
3.中材地质工程勘查研究院有限公司,北京 100102
An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf
ZHAO Xu-Chen1(), LI Xue-Jian2, CAO Fang-Zhi3, LEI Xiao-Dong1(), LI Chen1, HAN Yu-Da1
1. Beijing Institute of Geo-exploration Technology, Beijing 100120, China
2. Shenhua Baorixile Energy Co., Ltd., Hulun Buir 021025, China
3. CNBM Geological Engineering Exploration Academy Co., Ltd., Beijing 100102, China
全文: PDF(4594 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

内蒙古呼伦贝尔市某露天煤矿的主采煤层埋深在39~90 m,地下有许多地质资料不详的采空区,给露天开采剥离带来了巨大的安全隐患。为了查明地下采空区的具体位置和连通情况,利用跨孔电磁波CT法对采空区内部进行了详细探测,获得了真实可靠的地球物理数据。经分析,较完整岩层电磁波吸收系数在0.43~0.51 Nper/m之间,未充水的采空区电磁波吸收系数在0.29~0.41 Nper/m之间。根据采空区与围岩电磁波吸收系数的差异,绘制了采空区的形态解释成果图,经与钻孔资料对比,一致性较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵旭辰
李雪健
曹芳智
雷晓东
李晨
韩宇达
关键词 电磁波CT采空区煤矿吸收系数    
Abstract

In an open-pit coal mine in Hulun Buir of Inner Mongolia, the main mining coal seams are buried in depths ranging from 39m to 90m. Before coal mine integration, predatory mining has left many mined areas with unknown geological data, and the existence of mined-out areas has brought huge safety hazards to open-pit mining stripping. In order to find out the specific location and connectivity of the underground goaf, the authors used the cross-hole electromagnetic wave CT method to probe into the inside of the goaf in detail, and obtained a lot of real and reliable geophysical data. The analytical result shows that relatively complete rock formation electromagnetic wave absorption coefficient is in the range of 0.44~0.51Nper/m, and no water-filled goaf electromagnetic wave absorption coefficient is in the range of 0.29~0.40 Nper/m. According to the difference of electromagnetic wave absorption coefficient between goaf and surrounding rocks, the authors drew the morphological interpretation map of the goaf, and the results are basically consistent with the drilling data.

Key wordselectromagnetic wave CT    goaf    coal mine    absorption coefficient
收稿日期: 2021-02-05      修回日期: 2021-05-19      出版日期: 2021-08-20
ZTFLH:  P631  
基金资助:中国地质调查局项目(12120114033901);中国地质调查局项目(DD20160229);中国地质调查局项目(DD20190317)
通讯作者: 雷晓东
作者简介: 赵旭辰(1990-),男,硕士,工程师,从事地质地球物理相关研究工作。Email: zxc454606073@qq.com
引用本文:   
赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
ZHAO Xu-Chen, LI Xue-Jian, CAO Fang-Zhi, LEI Xiao-Dong, LI Chen, HAN Yu-Da. An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf. Geophysical and Geochemical Exploration, 2021, 45(4): 1088-1094.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0067      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/1088
Fig.1  孔间透视射线分布(a)和电磁波CT网格化模型(b)
Fig.2  研究区地层示意
Fig.3  不同工作频率电磁波能量曲线
Fig.4  钻孔平面位置示意
Fig.5  钻孔F5-F4-E4-D4-D5-E5-F5电磁波视吸收系数成像剖面(a)和解释成果(b)
Fig.6  钻孔P11-Q11-Q12电磁波视吸收系数成像剖面(a)和解释成果(b)
Fig.7  钻孔D15-D14-C14电磁波视吸收系数成像剖面(a)和解释成果(b)
钻孔 CT显示异常区深度 钻探掉钻深度 重合范围 重合高度
F5 47.0~51.0 47.0~52.0 47.0~51.0 4
F4 46.5~49.0 45.5~49.5 46.5~49.0 2.5
E4 48.0~49.0 48.0~51.0 48.0~49.0 1
D4 46.5~50.0 45.5~48.5 46.5~48.5 2
D5 48.0~51.0 48.0~52.0 48.0~51.0 3
E5 49.0~51.0 50.0~54.0 50.0~51.0 1
P11 59.0~60.0 59.5~63.0 59.5~60.0 0.5
Q11 56.5~60.0 54.0~58.5 56.5~58.5 2
Q12 56.5~60.0 58.0~60.0 58.0~60.0 2
D15 53.0~58.0 54.0~62.0 54.0~58.0 4
D14 48.0~54.0 49.0~54.0 49.0~54.0 5
C14 51.0~56.0 52.0~60.0 52.0~56.0 2
Table 1  电磁波CT显示异常区与钻孔资料对照
[1] 刘四新, 倪建福. 井间电磁法综述[J]. 地球物理学进展, 2020,35(1):153-165.
[1] Liu S X, Ni J F. Review for cross-hole electromagnetic method[J]. Progress in Geophysics, 2020,35(1):153-165.
[2] 郭贵安, 魏柏林. 井间电磁波CT技术在溶洞探测中的应用[J]. 华南地震, 1999,19(4):28-34.
[2] Guo G A, Wei B L. Prospecting corroded cavities using cross-section electromagnetic tomographic technique between boreholes[J]. South China Journal of Seismology, 1999,19(4):28-34.
[3] 何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010,7(4):451-455.
[3] He Y, Li Y T, Zhu Y J. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010,7(4):451-455.
[4] 李永涛, 陶喜林, 俞建河, 等. 井间电磁波CT技术在长江大堤岩溶探测中的应用[J]. CT理论与应用研究, 2009,18(1):55-62.
[4] Li Y T, Tao X L, Yu J H, et al. Application of cross-borehole electromagnetic computerized tomography in karst detection along Yangtze river levee[J]. Computerized Tomography Theory and Applications, 2009,18(1):55-62.
[5] 邱恩喜, 谢强, 文江泉. 电测深法和电磁波CT法在采空区注浆加固效果检测中的综合应用[J]. 工程地质学报, 2007,15(6):834-839.
[5] Qiu E X, Xie Q, Wen J Q. Application of the combination of electric sounding and electromagnetic CT in detection of grouting quality[J]. Journal of Engineering Geology, 2007,15(6):834-839.
[6] 李玉成. 钻孔电磁波技术在水泥浆灌注质量检测中的应用[J]. 物探与化探, 2018,42(3):640-644.
[6] Li Y C. Quality test of cement slurry grouting in limestone foundation[J]. Geophysical and Geochemical Exploration, 2018,42(3):640-644.
[7] 黄生根, 胡永健, 付卓, 等. 电磁波CT技术在钻孔灌注桩后压浆效果检测中的应用研究[J]. 岩土工程学报, 2019,41(1):225-228.
[7] Huang S G, Hu Y J, Fu Z, et al. Application of cross-hole electromagnetic wave CT in detection of post-grouting effect[J]. Chinese Journal of Geotechnical Engineering, 2019,41(1):225-228.
[8] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5):2187-2192.
[8] Xue G Q, Pan D M, Yu J C. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018,33(5):2187-2192.
[9] 吴茂林, 胡富彭, 胡雄武. 城市地下空间地质异常体井间综合CT探查[J]. 工程地球物理学报, 2018,15(6):812-816.
[9] Wu M L, Hu F P, Hu X W. Integrated CT exploration of urban underground space geology anomaly[J]. Chinese Journal of Engineering Geophysics, 2018,15(6):812-816.
[10] 顾孝同. 国内工程CT技术的发展与应用[J]. 工程地球物理学报, 2006,3(4):278-282.
[10] Gu X T. Developments and applications of engineering CT technologies[J]. Chinese Journal of Engineering Geophysics, 2006,3(4):278-282.
[11] 赵威. 电磁波CT集中常用成像方法应用效果对比[J]. 工程地球物理学报, 2019,16(5):749-754.
[11] Zhao W. Comparison of application effects of several common electromagnetic wave CT imaging methods[J]. Chinese Journal of Engineering Geophysics, 2019,16(5):749-754.
[12] 雷旭友. 多源多孔对联合反演方法及其在电磁波层析成像中的应用[D]. 成都:成都理工大学, 2010.
[12] Lei X Y. A joint inversion based on the data of multi-source and multi-crosshole and its application in the electromagnetic tomography[D]. Chengdu: Chengdu University of Technology, 2010.
[13] 陈春飞, 沈晓武, 张秉政. 基于电磁波层析成像技术的岩溶探测正演模拟及应用研究[J]. 工程地球物理学报, 2021,18(1):98-106.
[13] Chen C F, Shen X W, Zhang B Z. Forward modeling and application research in karst detection based on electromagnetic wave tomography technique[J]. Chinese Journal of Engineering Geophysics, 2021,18(1):98-106.
[14] 彭永良, 胡卸文, 宋大各, 等. 大型复杂采空区注浆效果检测方法研究[J]. 工程地质学报, 2013,21(4):664-671.
[14] Peng Y L, Hu X W, Song D G, et al. Inspection method for grouting effect in treating large complicated cavities due to mining[J]. Journal of Engineering Geology, 2013,21(4):664-671.
[15] 臧德福, 张庆乐, 晁永胜, 等. 井间电磁成像系统发射和接收同步测量应用研究[J]. 地球物理学进展, 2020,35(4):1631-1636.
[15] Zang D F, Zhang Q L, Chao Y S, et al. Applied research on synchronous measurement of transmitter and receiver of cross-well electromagnetic tomography system[J]. Progress in Geophysics, 2020,35(4):1631-1636.
[16] 吴岩, 顾汉明, 刘铁, 等. 电磁波CT在碳酸盐岩缝洞勘察中的应用[J]. 工程地球物理学报, 2009,6(2):185-189.
[16] Wu Y, Gu H M, Liu T, et al. Application of electromagnetic CT to cavern and fracture prospecting in carbonate rock[J]. Chinese Journal of Engineering Geophysics, 2009,6(2):185-189.
[1] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[2] 齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
[3] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[4] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[5] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
[6] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[7] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[8] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[9] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[10] 李小伟, 臧永亮, 罗宁, 李名, 豆珂. 石油孔固井水泥环属性参数研究与伽马复测系数修正方法[J]. 物探与化探, 2021, 45(3): 800-808.
[11] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[12] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[13] 张来福, 李士强, 刘国强, 杨虹, 田赟, 李国栋. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1): 220-225.
[14] 高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019, 43(6): 1404-1408.
[15] 石春娟. 重庆大足千手观音造像的电磁勘探和水文地质勘探[J]. 物探与化探, 2018, 42(6): 1306-1310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com