Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 878-885    DOI: 10.11720/wtyht.2020.0061
  2020年重磁方法理论及应用研究专题研讨会专栏 本期目录 | 过刊浏览 | 高级检索 |
矿区重力三维物性反演的参考模型构建方法及应用
周俊杰(), 陈聪, 喻翔, 高玲举, 陈涛
核工业北京地质研究院,北京 100029
Construction and application of reference model to three-dimensional property inversion of gravity data in the mining area
Jun-Jie ZHOU(), Cong CHEN, Xiang YU, Ling-Ju GAO, Tao CHEN
Beijing Research Institute of Uranium Geology,Beijing 100029,China
全文: PDF(3547 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

矿区重力数据三维约束反演是摸清深部成矿环境的重要技术手段,其关键在于有效地引入先验信息。参考模型是一种简单有效的约束引入方法,可显著提升反演质量。本文探讨实际应用中参考模型的构建方法,将地质图、物性统计以及地层界面信息有效引入到反演中,获得符合地质认识的可靠结果。在张麻井矿区构建参考模型约束并进行重力三维反演,约束反演结果与地表露头信息相符,且与钻孔揭示的层位信息吻合,而无约束结果与实际差异较大。因此,构建参考模型约束有较高的实用价值,对改善重力三维反演结果具有重要作用,值得推广应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周俊杰
陈聪
喻翔
高玲举
陈涛
关键词 重力数据三维反演参考模型约束张麻井矿区    
Abstract

Three-dimensional constrained inversion of gravity data in the mining area is an important technique for deep metallogenic environment exploration. The key point of the gravity inversion is the introduction of prior information. The reference model is a simple and effective constraint method, which can significantly improve the inversion quality. This paper discusses the construction of reference model in practice. Geological map, physical property statistics and interface information serve as parts of the import to obtain reliable results which accord with geological understanding. A reference model constraint was constructed and three-dimensional inversion of gravity data was performed in the Zhangmajing ore district. The inversion results are consistent with the surface outcrop information and the formation information revealed by the boreholes. The unconstrained results are quite different from the actual geological condition. Therefore, it is of high practical value to construct the reference model constraint to handle the inversion work. It is worthful and applicable in improving the gravity data inversion results.

Key wordsgravity data    three-dimensional inversion    reference model    constraints    Zhangmajing mining area
收稿日期: 2020-02-17      出版日期: 2020-08-28
:  P631  
基金资助:预研项目(3210402);核工业北京地质研究院青年科技创新基金“重磁资料的三维约束反演研究”(物QJ1801)
作者简介: 周俊杰(1985-),男,工程师,从事地球物理勘探及研究工作。Email:zjjs_195@163.com
引用本文:   
周俊杰, 陈聪, 喻翔, 高玲举, 陈涛. 矿区重力三维物性反演的参考模型构建方法及应用[J]. 物探与化探, 2020, 44(4): 878-885.
Jun-Jie ZHOU, Cong CHEN, Xiang YU, Ling-Ju GAO, Tao CHEN. Construction and application of reference model to three-dimensional property inversion of gravity data in the mining area. Geophysical and Geochemical Exploration, 2020, 44(4): 878-885.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0061      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/878
Fig.1  理论密度模型
Fig.2  不同参考模型下反演结果对比
模型单元 深度范围/m 密度/(103 kg·m-3) 剩余密度/(103 kg·m-3)
浅层风化层 0~30 2.1 -0.5
盖层 0~150 2.4 0
基底 50~200 2.9 0.3
Table 1  理论密度模型参数设置
Fig.3  张麻井矿区地质图(a)和剩余布格重力异常(b)
1—第四系;2—花吉营组安山岩;3—张家口组二段粗面岩;4—张家口组三段第8层流纹岩;5—张家口组三段第7层角粒熔岩;6—张家口组三段第6层凝灰岩;7—张家口组三段第5层板状流纹岩;8—张家口组三段第1~4层凝灰岩;9—次流纹斑岩;10—花岗斑岩;11—硅化带;12—地质界线;13—实测断层;14—推测断层;15—剖面;16—钻孔
岩石名称 地层代号 收集资料/(103 kg·m-3) 采样数 密度/(103 kg·m-3)
变化范围 平均
流纹岩 J3z3 2.41 65 2.37~2.49 2.34
凝灰岩 J3z3 2.34 69 2.21~2.61 2.41
角粒熔岩 J3z3-7 2.51 30 2.37~2.67 2.51
气孔状安山岩 K1h1 2.5 31 2.32~2.64 2.41
灰褐色粗面岩 J3z2 2.48 90 2.40~2.61 2.52
基底变质岩 Arh 2.69
次流纹斑岩 Cλπ 2.59
Table 2  研究区岩石密度特征
Fig.4  无参考模型约束反演结果外观(a)和切片(b)
Fig.5  基于地质图的物性数字化和三维模型构建
Fig.6  基于地层信息的模型构建及其与地表模型的融合
Fig.7  参考模型约束反演结果外观(a)和切片(b)
Fig.8  AA'剖面反演结果对比
[1] 朱裕振, 强建科, 王林飞, 等. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019,43(6):1182-1190.
[1] Zhu Y Z, Qiang J K, Wang L F, et al. Three-dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area[J]. Geophysical and Geochemical Exploration, 2019,43(6):1182-1190.
[2] Yang M, Wang W Y, Welford J K, et al. 3D gravity inversion with optimized mesh based on edge and center anomaly detection[J]. Geophysics, 2019,84(3):1-62.
[3] Li Y G. 3D inversion of gravity gradiometer data[J]. SEG Expanded Abstracts, 1999,20(1):1470.
[4] 姚长利, 郝天珧, 管志宁. 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002,26(4):253-257.
[4] Yao C L, Hao T Y, Guan Z N. Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J]. Geophysical and Geochemical Exploration, 2002,26(4):253-257.
[5] Williams N C. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia [D]. Canada:The University of British Columbia, Vancouver, 2008.
[6] 祁光, 吕庆田, 严加永, 等. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J]. 地球物理学报, 2012,55(12):4194-4206.
[6] Qi G, Lv Q T, Yan J Y, et al. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit—A case study[J]. Chinese Journal of Geophysics, 2012,55(12):4194-4206.
[7] 兰学毅, 杜建国, 严加永, 等. 基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例[J]. 地球物理学报, 2015,58(12):4436-4449.
[7] Lan X Y, Du J G, Yan J Y, et al. 3D gravity and magnetic interactive inversion modeling based on prior information: A case study of the Tongling ore concentration area[J]. Chinese Journal of Geophysics, 2015,58(12):4436-4449.
[8] 郭冬, 严加永, 吕庆田, 等. 地质信息约束下的三维密度填图技术研究及应用[J]. 地质学报, 2014,88(4):763-776.
[8] Guo D, Yan J Y, Lyu Q T. 3D Density mapping constrained by geological information-model study and application[J]. Acta Geologica Sinica, 2014,88(4):763-776.
[9] 罗凡, 严加永, 付光明. 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018,42(1):50-60.
[9] Luo F, Yan J Y, Fu G M. The application of gravity and magnetic three-dimensional inversion based on known information constraint in deep magnetite exploration: A case study of the Nihe iron deposit in Anhui Province[J]. Geophysical and Geochemical Exploration, 2018,42(1):50-60.
[10] 陈长敬, 刘圣博, 黄理善. 音频大地电磁测深(AMT)约束下的重力三维反演应用研究——以越城岭岩体北缘隐伏岩体为例[J]. 地球物理学进展, 2019,34(4):1391-1397.
[10] Chen C J, Liu S B, Huang L S. 3D inversion of gravity under audio frequency magnetotelluric method (AMT) constraint: a case study of the concealed rock mass in the northern margin of Yuechengling rock mass[J]. Progress in Geophysics, 2019,34(4):1391-1397.
[11] 陈辉, 邓居智, 吕庆田, 等. 九瑞矿集区重磁三维约束反演及深部找矿意义[J]. 地球物理学报, 2015,58(12):168-179.
[11] Chen H, Deng J Z, Lv Q T, et al. Three-dimensional inversion of gravity and magnetic data at Jiujiang Ruichang district and metallogenic indication[J]. Chinese Journal of Geophysics, 2015,58(12):4478-4489.
[12] Zhang Y, Yan J, Li F, et al. A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers[J]. Geophysical Journal International, 2015,201(1):267-275.
[13] Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009,178(2):623-637.
[14] Rezaie M, Moradzadeh A, Kalate A N, et al. Fast 3D focusing inversion of gravity data using reweighted regularized lanczos bidiagonalization method[J]. Pure and Applied Geophysics, 2016,174(1):1-16.
[15] Zhou J J, Meng X H, Guo L H, et al. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization[J]. Journal of Applied Geophysics, 2015,119(8):51-60.
[16] Li Y G, Oldenburg D W. 3D inversion of gravity data[J]. Geophysics, 1998,63(1):109-119.
[17] 郭鸿军, 马申坤. 河北省沽源县张麻井铀钼矿床控矿因素分析及外围找矿前景探讨[J]. 地质调查与研究, 2009,33(3):210-215.
[17] Guo H J, Ma S K. Analysis on Ore-control factors and peripheral prospecting for the Zhangmajing U-Mo deposit in Guyuan, Hebei Province[J]. Geological Survey and Research, 2009,33(3):210-215.
[18] 彭朝晖, 施兴, 张亚东, 等. 冀西北地区重力场特征及对地质构造的再认识[J]. 物探与化探. 2007,31(2):106-109.
[18] Peng C H, Shi X, Zhang Y D, et al. Characteristics of the regional gravity field in northwest Hebei and their significance to geological tectonics[J]. Geophysical and Geochemical Exploration, 2007,31(2):106-109.
[19] 陈聪, 周俊杰, 黄志新, 等. 460矿床关键控矿要素重磁异常特征及深部结构研究[J]. 铀矿地质, 2019,35(1):27-32.
[19] Chen C, Zhou J J, Huang Z X, et al. Research on gravity and magnetic anomaly of main ore controlling factors and deep structure of deposit 460[J]. Uranium Geology, 2019,35(1):27-32.
[1] 许海红, 韩小锋, 袁炳强, 张春灌, 王宝文, 赵飞, 段瑞锋. 基于径向基函数的1∶5万规则分布重力数据插值参数优选[J]. 物探与化探, 2021, 45(6): 1539-1552.
[2] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[3] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[4] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[5] 周月, 官大维, 延海涛, 张小龙. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2): 308-315.
[6] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[7] 高秀鹤, 熊盛青, 于长春, 孙思源. 不同高度重力数据和井中重力数据融合反演研究[J]. 物探与化探, 2020, 44(6): 1361-1367.
[8] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[9] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[10] 罗锋, 王冠鑫, 周锡华, 李行素. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(4): 872-880.
[11] 姚伟华. 大回线源瞬变电磁一维自适应反演方法及应用[J]. 物探与化探, 2019, 43(3): 584-588.
[12] 孟凡松, 张刚, 陈梦君, 李怀良. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3): 672-678.
[13] 马琦琦, 孙赞东, 杨柳鑫. 改进的贝叶斯迭代反演方法及其在白云岩致密储层识别的应用[J]. 物探与化探, 2019, 43(2): 234-243.
[14] 陈德元, 张保卫, 岳航羽, 范含周. 基于特征曲线构建的地质统计反演在薄砂体预测中的应用[J]. 物探与化探, 2018, 42(5): 999-1005.
[15] 彭海龙, 赫建伟, 任婷, 邓盾, 江凡, 王瑞敏, 张文祥. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3): 537-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com