Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 350-355    DOI: 10.11720/wtyht.2020.1334
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
利用全反射X射线荧光光谱法研究土壤中活动态元素提取动力学
王冀艳1, 储彬彬2, 姚文生3,4, 詹秀春2, 刘勉1
1. 河南省岩石矿物测试中心,河南 郑州 450012
2. 国家地质实验测试中心,北京 100037
3. 中国地质科学院 地球物理地球化学勘察研究所,河北 廊坊 065000
4. 联合国教科文全球尺度地球化学国际研究中心,河北 廊坊 065000
A study of the kinetic model of leaching mobile forms of elements in soils by the total reflection X-ray fluorescence spectrometry
Ji-Yan WANG1, Bin-Bin CHU2, Wen-Sheng YAO3,4, Xiu-Chun ZHAN2, Mian LIU1
1. Henan Rock and Mineral Testing Center, Zhengzhou 450012, China
2. National Research Center for Geoanalysis, Beijing 100037, China
3. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
4. UNESCO Global Scale Geochemistry International Research Center, Langfang 065000, China
全文: PDF(1703 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

活动态提取技术是深穿透地球化学研究隐伏矿的有效手段之一。提取时间是活动态提取技术的一个关键因子,由于提取剂与目标元素、赋存矿物的作用方式不同,提取时间对提取效果的影响会不同。本研究采用全反射X射线荧光光谱法(TXRF)测定土壤中Cu、Pb、Zn、Ni、Mn活动态提取量随提取时间的变化。结果表明,在1 h内,分析元素提取量随提取时间急速增长,在7 h内提取量增长速率较高,分析元素提取量基本在24 h达到平衡。对各元素的提取过程建立了两点动力学模型wt=w1exp(-k1t)+w2exp(-k2t),模拟提取土壤中两种吸附形式的活动态元素,方程中k1代表非专性吸附活动态(如离子态、静电吸附、以纳微颗粒形式存在)的提取速率常数,提取速率较快,k2代表专性吸附的活动态(粘土吸附态、铁锰氧化物弱结合或有机络合态)的提取速率常数,提取速率相对较慢。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王冀艳
储彬彬
姚文生
詹秀春
刘勉
关键词 全反射X射线荧光光谱法(TXRF)活动态提取土壤提取时间动力学模型    
Abstract

The leaching of elements of mobile forms is one of the effective techniques in deep penetrating geochemistry in search of concealed deposits. The leaching time as an important factor has a great effect on the leaching results because of the different action modes of extractant, target elements and minerals. The total reflection X-ray fluorescence spectrometry (TXRF) was used to determine the change of the leaching amount of mobile forms of Cu, Pb, Zn, Ni and Mn with the leaching time. The results showed that the leaching amount of analytical elements increased rapidly within 1 hour, increased at a high rate within 7 hour and reached a balance at 24 h. The nonlinear kinetic model of wt = w1 exp(-k1t) + w2 exp(-k2t) was established to simulate the leaching course for mobile forms of elements adsorbed by two forms in soils. In the equation, k1 which is relatively fast represents the leaching rate of the non-obligate adsorption of mobile forms of elements such as ion form, electrostatic adsorption form, and existence in the form of nanoscale metal particles, while k2 which is relatively slow represents the leaching of the obligate adsorption of mobile forms of element, such as clay adsorption form, weak binding form of iron and manganese oxide or organically bound form.The kinetic model further provides a basis for exploring the leaching mechanism of mobile forms of elements.

Key wordstotal reflection X-ray fluorescence spectrometry (TXRF)    leaching mobile forms of elements    soil    leaching time    kinetic model
收稿日期: 2019-06-22      出版日期: 2020-04-22
:  P632  
基金资助:国家重点研发计划项目(2016YFC0600603)
作者简介: 王冀艳(1983-),女,硕士,高级工程师,主要从事无机元素分析研究工作。Email: 94396436@qq.com
引用本文:   
王冀艳, 储彬彬, 姚文生, 詹秀春, 刘勉. 利用全反射X射线荧光光谱法研究土壤中活动态元素提取动力学[J]. 物探与化探, 2020, 44(2): 350-355.
Ji-Yan WANG, Bin-Bin CHU, Wen-Sheng YAO, Xiu-Chun ZHAN, Mian LIU. A study of the kinetic model of leaching mobile forms of elements in soils by the total reflection X-ray fluorescence spectrometry. Geophysical and Geochemical Exploration, 2020, 44(2): 350-355.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1334      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I2/350
Fig.1  不同提取时间对Cu提取量的影响
Fig.2  不同提取时间对Pb提取量的影响
Fig.3  不同提取时间对Zn提取量的影响
Fig.4  不同提取时间对Ni提取量的影响
Fig.5  不同提取时间对Mn提取量的影响
提取元素 实验样品 w0/
10-6
w1/
10-6
k1/h-1 w2 /
10-6
k2/h-1 R2
ASA-2a 3.461 2.284 4.891 1.177 0.1395 0.986
Cu ASA-3a 4.378 3.211 23.49 1.168 0.2344 0.984
ASA-6a 20.24 15.83 5.666 4.408 0.0973 0.996
ASA-2a 7.973 3.497 2.997 4.469 0.0499 0.972
Pb ASA-3a 8.23 3.564 22.57 4.666 0.1062 0.989
ASA-6a 28.03 17.51 4.197 10.51 0.1021 0.995
ASA-2a 3.334 2.361 3.869 0.979 0.127 0.992
Zn ASA-3a 7.046 3.892 4.570 3.153 0.0941 0.992
ASA-6a 6.845 3.687 2.592 3.145 0.0480 0.993
ASA-2a 1.368 0.4976 1.319 0.8565 0.0350 0.977
Ni ASA-3a 2.188 0.5907 4.635 1.597 0.0511 0.985
ASA-6a 1.762 0.7944 2.477 0.9611 0.0180 0.975
ASA-2a 147.3 25.02 1.957 121.8 0.0660 0.993
Mn ASA-3a 300.5 63.98 42.44 236.5 0.0661 0.983
ASA-6a 269.3 78.03 54.78 191.3 0.1763 0.987
Table 1  元素活动态提取过程动力学模拟参数
[1] 王学求 . 深穿透勘查地球化学[J]. 物探与化探, 1998,22(3):166-169.
[1] Wang X Q . Deep penetration exploration geochemistry[J]. Geophsicai and Geochemical Exploration, 1998,22(3):166-169.
[2] 王学求 . 深穿透地球化学迁移模型[J]. 地质通报, 2005,24(10-11):892-896.
[2] Wang X Q . Conceptual model of deep-penetrating geochemical migration[J]. Geological Bulletin of China, 2005,24(10-11):892-896.
[3] 王学求, 张必敏, 叶荣 . 纳米地球化学与覆盖区矿产勘查[J]. 矿物岩石地球化学通报, 2016,35(1):43-51.
[3] Wang X Q, Zhang B M, Ye R . Nanogeochemistry for mineral exploration through covers[J]. Bulletin of Mineralogy, Petrology, Petrology and Geochemistry, 2016,35(1):43-51.
[4] 姚文生, 王学求, 张必敏 , 等. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验[J]. 地学前缘, 2012,19(3):167-176.
[4] Yao W S, Wang X Q, Zhang B M , et al. Pilot study of deep-penetrating geochemical exploration for sandstone type uranium deposit[J]. Earth Science Frontiers, 2012,19(3):167-176.
[5] 徐善法, 刘汉彬, 王玮 , 等. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017,42(2):189-193.
[5] Xu S F, Liu H B, Wang W , et al. An experimental study of deep penetration geochemical technology in the shihongtan uranium deposit[J]. Geophsicai and Geochemical Exploration, 2017,42(2):189-193.
[6] Xie X J, Lu Y X, Yao W S , et al. Further Study on Deep Penetrating Geochemistry over the Spence Porphyry Copper Deposit, Chile[J]. Earth Science Frontiers, 2011,2(3):303-311.
[7] 文雪琴 . 金属活动态提取法及其在黑龙江大兴安岭森林覆盖区的应用[J]. 地球科学与环境学报, 2006,28(4):43-48.
[7] Wen X Q . Application of selective of leaching mobile metal forms in forestry terrain,daxing’anling, heilongjiang[J]. Journal of Sciences and Environment, 2006,28(4):43-48.
[8] 姚文生 . 元素活动态提取剂机理及实验条件[D]. 北京:中国地质科学院, 2011: 24-36.
[8] Yao W S . Leaching mechanism and conditions of extractants on mobile forms of elements in soils[D]. Beijing:Chinese Academy of Geological Science, 2011: 24-36.
[9] 王学求, 姚文生, 孙爱琴 , 等. 贱金属元素活动态的提取剂、制备方法及提取方法:中国,CN102787235A[P]. 2012.11.21.
[9] Wang X Q, Yao W S, Sun A Q , et al. The extractant, preparation and leaching method of base mobile forms:China, CN102787235A[P]. 2012.11.21.
[10] 曹立峰, 王敏捷, 申硕果 , 等. 活动态提取—电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J]. 岩矿测试, 2015,34(4):424-429.
[10] Cao L F, Wang M J, Sheng S G , et al. Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the lunchan ore concentrated district by ICP-MS with extraction elements of mobile forms[J]. Rock and Mineral Analysis, 2015,34(4):424-429.
[11] 藏吉良, 丁春霞, 尚宝忠 , 等. 深穿透地球化学样品中铜活动态提取条件研究与初步应用[J]. 岩矿测试, 2012,31(4):607-612.
[11] Zhang J L, Ding C X, Shang B Z , et al. Leaching condition for the determination of mobile forms of copper in deep-penetrating geochemical samples and its preliminary application[J]. Rock and Mineral Analysis, 2012,31(4):607-612.
[12] 唐志中, 陈静, 孙自军 , 等. 深穿透地球化学样品中金活动态提取条件研究[J]. 黄金, 2013,34(6):71-74.
[12] Tang Z Z, Chen J, Shun Z J , et al. Leaching conditions for determination of mobile forms gold in deep-penetrating geochemical samples[J]. Gold, 2013,34(6):71-74.
[13] 靳阿祥, 张艾蕊, 王晓康 , 等. 全反射X射线荧光光谱法测定水系沉积物中常量和微量元素[J]. 分析试验室, 2017,36(11):1294-1297.
[13] Jin A X, Zhang A R, Wang X K , et al. Determination of macro-and micro-elements in stream sediment by total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017,36(11):1294-1297.
[14] 王谦, 郑琳, 任飞 , 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018,46(4):517-523.
[14] Wang Q, Zheng L, Ren F , et al. Determination of Lead, arsenic and mercury in cream cosmetics by total reflection X-ray fluorescence spectrometry using suspension sampling[J]. Chinese Journal of Analysis Chemistry, 2018,46(4):517-523.
[15] Pashkova G V, Aisueva T S, Finkelshtein A L , et al. Quantitative approaches to the determination of elements in lake sediments by total reflection X-ray fluorescence[J]. Microchemical Journal, 2018,143:264-271.
[16] Bahadir Z, Torrent L, Hidalgo M . Simultaneous determination of silver and gold nanoparticles by cloud point extraction and total reflection X-ray fluorescence analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,149:22-29.
[17] Backes C A, McLaren R G, Rate A W , et al. Kinetics of Cadmium and Cobalt Desorption from Iron and Manganese Oxides[J]. Soil Sci. Soc. Am. J., 1995,59:778-785.
[18] Sadeghia M, Albaneseb S, Morrisa G , et al. REE concentrations in agricultural soil in Sweden and Italy:Comparison of weak MMI® extraction with near total extraction data[J]. Applied Geochemistry, 2015,63:22-36.
[19] Sylvester G C, Mann A W, Cook S R , et al. MMI partial extraction geochemistry for the resolution of anthropogenic activities across the archaeological Roman town of Calleva Atrebatum[J]. Geochemistry: Exploration, Environment, Analysis, 2018: 58-74.
[1] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[2] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[3] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[4] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[5] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[6] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[7] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[8] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[9] 解庆锋, 周小果, 王振峰, 马振波, 李胜昌, 张得恩, 司法祯. 河南省土壤环境监测背景点位布设参考区域划分研究[J]. 物探与化探, 2021, 45(5): 1164-1170.
[10] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[11] 刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
[12] 雷波, 兰明, 贺锋, 鲁宝龙, 罗才武. 基于熵—中位数子区滤波提取土壤氡气浓度异常——以甘肃省花海盆地为例[J]. 物探与化探, 2021, 45(4): 1064-1070.
[13] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[14] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[15] 窦备, 张必敏, 叶荣, 迟清华. 黄土覆盖区隐伏矿地球化学勘查技术试验研究——以河南中河堤银铅锌多金属矿为例[J]. 物探与化探, 2021, 45(4): 933-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com