Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (1): 177-182    DOI: 10.11720/wtyht.2017.1.28
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
镇江谏壁热电厂煤灰库对周边土壤硒的环境影响
潘永敏1, 徐玉琳1, 华明1, 廖启林1, 倪俊2, 高立1, 周钢军1
1. 江苏省地质调查研究院 国土资源部地裂缝地质灾害重点试验室, 江苏 南京 210018;
2. 镇江市国土资源局, 江苏 镇江 212028
The effects of coal ash storage of Zhenjiang Jianbi Power Plant on the selenium concentration of the surrounding soil environment
PAN Yong-Min1, XU Yu-Lin1, HUA Ming1, LIAO Qi-Lin1, NI Jun2, GAO Li1, ZHOU Gang-Jun1
1. Geological Survey of Jiangsu Province, Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, Nanjing 210018, China;
2. Zhenjiang Land and Resources Administration, Zhenjiang 212028, China
全文: PDF(1425 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

镇江谏壁热电厂始建于1959年,是华东电网的主力电厂之一,已创下发电量连续26年超100亿kW/h的非凡业绩,产生了大量的粉煤灰。选取龙山煤灰库和贞观山煤灰库作为研究对象,对煤灰库区的粉煤灰、地表水及其周边水系沉积物、岩石、土壤、水稻籽实等不同类型样品进行分析,发现表层土壤受粉煤灰影响存在Se富集,按照谭见安的划分标准,足Se和富Se土壤分别占总面积的32.96%和43.08%;Se不足和Se缺乏土壤分别占总面积的7.86%和6.76%%;Se过剩土壤占总面积的9.34%,主要分布在煤灰库下游附近,最大值达14.7×10-6。调查表明,离煤灰库较远的农田Se主要来自高Se含量灌溉水,离煤灰库较近的农田除受高Se含量灌溉水影响外,同时还受到随水迁移的粉煤灰沉积物的叠加影响。根据Se与重金属元素聚类树状图判断,土壤在输入Se的同时亦输入了一定量的Cd、Hg和Pb,从输入量看Hg > Cd > Pb。总体上,表层土壤As、Cd、Cr、Cu、Hg、Ni、Pb和Zn等重金属元素含量多小于相应的土壤环境质量一级标准(自然背景值),浓度未达到污染水平,只有Cd和Hg的最大值接近农田土壤二级标准。受土壤环境影响,区内存在富Se大米,且大米中As、Cd、Cr、Hg、Pb等重金属元素的含量没有出现超标现象,表明该地区具备生产富Se大米的潜力。建议在该区域利用不同水源进行灌溉,从而调整土壤中Se含量,即对土壤Se缺乏区域灌溉高Se含量水,使富Se土壤区域扩大,对已存在Se过剩的土壤引用一般水源灌溉,使之范围缩小,含量降低。通过该项研究得出一个结论:粉煤灰中含有较高的Se,而有害重金属含量甚少,因此可提取Se或将粉煤灰直接添加到肥料中制成富Se肥。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Built in 1959, the Zhenjiang Jianbi Power Plant is one of the main power plants in the power grid of East China. Its total power generation has hit over 100 billion kWh in the past twenty-six years. Nevertheless, a significant amount of coal ash has also been generated. To investigate the environmental effects of coal ash, the authors selected Longshan Ash Mountain and Zhenguan Ash Mountain as the study objects. Testing the samples of coal ash, surface water and its surrounding sediments, rocks, soil, and rice seed around the coal ash mountain areas, the authors have found that the topsoil in the study area is rich in selenium (Se) due to the influence of coal ash. According to the classification criteria set by Tan Jianan, 32.96% of the soil contains a medium level of Se, 43.08% is rich in Se, 7.86% is low in Se concentration, 6.76% is very low in Se concentration, and 9.34% contains excessive Se. The soil with excessive Se is mainly located around the downstream coal ash area, with a maximum amount of 14.7×10-6. It is found that the richness of Se in the farmland far away from coal ash areas mainly stems from high Se concentration in the irrigation water, while the richness of Se in the farmland close to coal ash areas is attributed not only to irrigation but also to the sediments of coal ash brought by the water flow. The dendrogram analysis of Se and heavy metals shows that the region affected by Se is also affected by Cd, Hg and Pb. The richness of these heavy metals is ranked as Hg > Cd > Pb. The topsoil is generally not contaminated by As, Cd, Cr, Cu, Hg, Hi, Pb, Zn and other heavy metals because the concentration of these heavy metals is less than the natural amount. Only the concentration of Cd and Hg is close to the maximum of the second degree in the national farmland standard. Affected by soil environment, the study area has Se-rich rice, whose concentration of As, Cd, Cr, Hg, Pb and other heavy metals does not exceed the food contamination standard. Based on these findings, the authors suggest using different irrigation sources in the study area. Specifically, we should use Se-rich water to irrigate the Se-insufficient soil so as to expand the area with Se-rich soil, and use the average water to irrigate the Se-excessive soil so as to reduce Se concentration. The results of the study also imply that coal ash is rich in Se and contains very little harmful heavy metals. Therefore, it may be profitable to extract Se from coal ash and produce Se-rich fertilizers.

收稿日期: 2016-03-07      出版日期: 2017-02-10
:  P632  
基金资助:

江苏省地质勘查基金项目“镇江城市地质资源与环境”(苏财建[2011]425号)

作者简介: 潘永敏(1961-),男,高级工程师,主要从事生态地球化学研究工作。Email:panyongminok@126.com
引用本文:   
潘永敏, 徐玉琳, 华明, 廖启林, 倪俊, 高立, 周钢军. 镇江谏壁热电厂煤灰库对周边土壤硒的环境影响[J]. 物探与化探, 2017, 41(1): 177-182.
PAN Yong-Min, XU Yu-Lin, HUA Ming, LIAO Qi-Lin, NI Jun, GAO Li, ZHOU Gang-Jun. The effects of coal ash storage of Zhenjiang Jianbi Power Plant on the selenium concentration of the surrounding soil environment. Geophysical and Geochemical Exploration, 2017, 41(1): 177-182.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.1.28      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I1/177

[1] 尹昭含,鞠山见,马晓丽,等.硒(Se)的生物地球化学及其生态效应[J].生态学杂志,1989,8(4):45-50.
[2] 崔剑波.生态环境中的生命元素Se与健康的讲究[J].生态学进展,1989,6(4):243-251.
[3] Adams A K,Wermuth E O,Mcbride P E.Antioxidant Vitamins and the Prevention of Coronary Heart Disease[J]. American Family Physician,1999,60(3):895-902.
[4] 布和敖斯尔,张东威,刘力.土壤硒区域环境分异及安全阈值的研究[J].土壤学报,1995,32(2):186-193.
[5] 谭见安.中华人民共和国地方病与环境图集[M].北京:科学出版社,1989.
[6] 魏明辉,陈树清,谷振飞,等.河北平原区表层土壤富硒成因初探[J].河北地质,2012,4:29-31.
[7] GB5084-2005农田灌溉水质标准[S].北京:中国标准出版社,2006.
[8] GB15618-1995土壤环境质量标准[S].北京:中国标准出版社,1997.
[9] GBT22499-2008富硒稻谷[S].北京:中国标准出版社,2008.
[10] GB2762-2012粮食限量标准[S].北京:中国标准出版社,2012.
[11] 李书鼎,曾建华.用75Se对土壤-小麦系统中硒转移规律研究[J].生态学报,1990,10(3):220-224.
[12] Hamilton J W,Breath A.Selenium uptake and conversion by certain crop plants[J].Agriculture Joumal,1963,55:528.
[13] 张晶.叶面喷硒对水稻和油菜的硒含量及药用价值的影响[D].西安:陕西师范大学,2001.

[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com