Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1171-1178    DOI: 10.11720/wtyht.2021.0091
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义
魏岩岩1,2,3(), 吴磊2,3, 周道卿1, 肖安成2,3, 黄凯2,3
1.中国自然资源航空物探遥感中心, 北京 100083
2.浙江大学 地球科学学院,浙江 杭州 310012
3.教育部含油气盆地构造研究中心,浙江 杭州 310012
Cenozoic tectonic deformation characteristics of Alar fault in southwestern Qaidam Basin and their significance
WEI Yan-Yan1,2,3(), WU Lei2,3, ZHOU Dao-Qing1, XIAO An-Cheng2,3, HUANG Kai2,3
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China
2. School of Earth Science,Zhejiang University,Hangzhou 310012,China
3. Research Center of Structures in Oil and Gas Bearing Basins,Ministry of Education,Hangzhou 310012,China
全文: PDF(5331 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

依据二维、三维地震资料,精细分析位于柴达木盆地西南部的阿拉尔断裂的几何学特征、水平缩短量及活动时间等,并探讨了其整个新生代的运动学特征、形成机制和油气地质意义。结果表明,阿拉尔断裂平面上可分为NWW走向的西段和近SN走向的东段,两段近于垂直;剖面上,其西段倾向南,倾角相对较小,而东段倾向西,断面近乎直立。阿拉尔断裂自新生代初期开始活动,西段以逆冲为主,水平缩短量和竖直抬升量均达到3 km以上,走滑量约为1 km;东段以右旋走滑为主,水平缩短量和竖直抬升量为1 km左右,走滑量达到3 km。阿拉尔断裂的形成和活动受南侧祁漫塔格造山带向北挤压和西侧阿尔金左旋走滑断裂的共同影响,柴西南地区断裂活动与油气形成具有良好的时空匹配关系,对形成油气藏具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏岩岩
吴磊
周道卿
肖安成
黄凯
关键词 柴达木盆地柴达木盆地西南部阿拉尔断裂变形特征    
Abstract

Based on 2D and 3D seismic data, this study analyzes the geometric characteristics,horizontal shortening,and active time of the Alar fault in the southwestern Qaidam Basin in detail and explores the kinematic characteristics,formation mechanisms,and significance for hydrocarbon accumulation during the whole Cenozoic.The results are as follows.The Alar fault can be divided into the western segment in NWW trending and the eastern segment in nearly NS trending,which are nearly vertical. As shown in sections,the western segment inclines southward with a relatively small dip angle,while the eastern segment inclines westward with an almost vertical section.The Alar fault has been active since the Early Cenozoic.The activities of the western segment are dominated by thrust,with horizontal shortening and vertical uplift both exceeding 3 km and strike-slip motion for about 1 km.The activities in the eastern segment are dominated by dextral strike-slip motion,with horizontal shortening and vertical uplift of about 1 km and strike-slip motion of up to 3 km.The formation and activities of the Alar fault are jointly affected by the northward compression imposed by the Qimantage orogenic belt to the south and the Altun left-literal strike-slip fault to the west.There is a close spatial-temporal matching relationship between the fault activities and the formation of oil and gas in the southwestern Qaidam Basin.Therefore,the fault activities are of great significance for the formation of oil reservoirs.

Key wordsQaidam Basin    southwest Qaidam Basin    Alar fault    deformation characteristics
收稿日期: 2021-02-23      修回日期: 2021-08-30      出版日期: 2021-10-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金面上项目(41972218);中国地质调查局地质调查项目“银额盆地及外围航空物探调查”(DD20190025)
作者简介: 魏岩岩(1989-),女,工程师,现主要从事盆地分析、地震解释、航空重磁解释等工作。Email: hbweiyanyan@163.com
引用本文:   
魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
WEI Yan-Yan, WU Lei, ZHOU Dao-Qing, XIAO An-Cheng, HUANG Kai. Cenozoic tectonic deformation characteristics of Alar fault in southwestern Qaidam Basin and their significance. Geophysical and Geochemical Exploration, 2021, 45(5): 1171-1178.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0091      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1171
Fig.1  研究区位置及地质概况
a—柴西南及邻区地质简图;b—柴达木盆地及周缘地形图;c—阿拉尔地区断裂系统图
Table 1  柴达木盆地新生代综合地层
Fig.2  过阿拉尔及周边断裂地震剖面及解释剖面
Fig.3  地震剖面位置及新生代总缩短量
a—垂直于阿拉尔断裂走向的地震剖面位置及编号;b—沿阿拉尔断裂走向各地震剖面新生代总缩短量
Fig.4  斜向断层引起的断层效应
a、b—当断裂走向与地层走向不一致时,断裂两侧的标志层或构造线投影到某一个面上时,会表现出水平错移,给人在平面上造成左旋走滑或右旋走滑假象;c—当断裂走向与地层走向一致时,将断点投影到同一平面上时未产生视觉误差
Fig.5  阿拉尔断裂运动模式示意
a—新生代早期;b—新生代晚期
[1] 戴俊生, 曹代勇. 柴达木盆地新生代构造样式的演化特点[J]. 地质论评, 2000, 46(5):455-460.
[1] Dai J S, Cao D Y. Evolution characteristics of Cenozoic structural style in the Qaidam Basin[J]. Geological Review, 2000, 46(5):455-460.
[2] 汤良杰, 金之钧, 戴俊生, 等. 柴达木盆地及相邻造山带区域断裂系统[J]. 地球科学, 2002, 27(6):676-682.
[2] Tang L J, Jin Z Y, Dai J S, et al. Regional fault systems of Qaidam Basin and adjacent Orogenic belts[J]. Earth Science, 2002, 27(6):676-682.
[3] 付锁堂, 关平, 张道伟. 柴达木盆地近期勘探工作思考[J]. 天然气地球科学, 2012, 23(5):813-819.
[3] Fu S T, Guan P, Zhang D W. Consideration about recent oil and gas exploration of Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(5):813-819.
[4] 关平, 简星. 青藏高原北部新生代构造演化在柴达木盆地中的沉积记录[J]. 沉积学报, 2013, 31(5):824-833.
[4] Guan P, Jian X. The Cenozoic sedimentary record in Qaidam Basin and its implications for tectonic evolution of the Northern Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2013, 31(5):824-833.
[5] Zhou J, Xu F, Wang T, et al. Cenozoic deformation history of the Qaidam Basin,NW China:Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics[J]. Earth and Planetary Science Letters, 2006, 243(1-2):195-210.
doi: 10.1016/j.epsl.2005.11.033
[6] Wei Y, Xiao A, Wu L, et al. Temporal and spatial patterns of Cenozoic deformation across the Qaidam Basin,Northern Tibetan Plateau[J]. Terra Nova, 2016, 28(6):409-418.
doi: 10.1111/ter.2016.28.issue-6
[7] Wu L, Xiao A, Ma D, et al. Cenozoic fault systems in southwest Qaidam Basin, northeastern Tibetan Plateau:Geometry,temporal development,and significance for hydrocarbon accumulation[J]. AAPG Bulletin, 2014, 98(6):1213-1234.
doi: 10.1306/11131313087
[8] 崔兴宝. 综合勘探技术在柴达木盆地西部地区的应用[J]. 物探与化探, 2003, 27(3):171-175.
[8] Cui X B. The application of the integrated exploration technique to the western part of qaidam basin[J]. Geophysical and Geochemical Exploration, 2003, 27(3):171-175.
[9] 熊业刚, 罗铮, 张启全, 等. 逆掩断裂带正演分析与解释——以英雄岭地区为例[J]. 物探与化探, 2019, 43(3):551-557.
[9] Xiong Y G, Luo Z, Zhang Q Q, et al. Overthrust belt forward analysis and interpretation:A case study of Yingxiongling area[J]. Geophysical and Geochemical Exploration, 2019, 43(3):551-557.
[10] Mao L, Xiao A, Wu L, et al. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin,NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains[J]. Science China Earth Sciences, 2014, 57(11):2726-2739.
doi: 10.1007/s11430-014-4951-z
[11] 倪金龙, 汪劲草, 周莉, 等. 中—新生代东昆仑造山带构造事件及柴西南盆地原型研究[J]. 现代地质, 2007, 21(3):505-510.
[11] Ni J L, Wang J C, Zhou L, et al. Study on the Tectonic events of East-Kunlun Orogenic Belt and Prototype about West-South Qaidam Basin during Mesozoic and Cenizoic[J]. Geoscience, 2007, 21(3):505-510.
[12] Xiang C, Fu S, Wang H, et al. Geometry and kinematics of the Arlar strike-slip fault,SW Qaidam basin,China:New insights from 3-D seismic data[J]. Journal of Asian Earth Sciences, 2015, 98:198-208.
doi: 10.1016/j.jseaes.2014.09.039
[13] 方向, 张永庶. 柴达木盆地西部地区新生代沉积与构造演化[J]. 地质与勘探, 2014, 50(1):28-36.
[13] Fang X, Zhang Y S. Cenozoic sediments and tectonic evolution in the western Qaidam basin[J]. Geology and Exploration, 2014, 50(1):28-36.
[14] 李兰斌, 孙丽娜, 孙家振, 等. 柴西南地区断裂特征分析[J]. 石油地球物理勘探, 2010, 45(3):443-447.
[14] Li L B, Sun L N, Sun J Z, et al. The fracture characteristic analysis in Southwest area of Qaidam Basin[J]. Oil Geophysical Prospecting, 2010, 45(3):443-447.
[15] Chen W P, Chen C Y, L N A Belek J. Present-day deformation of the Qaidam basin with implications for intra-continental tectonics[J]. Tectonophysics, 1999, 305(1-3):165-181.
doi: 10.1016/S0040-1951(99)00006-2
[16] Wang Y, Zheng J, Zhang W, et al. Cenozoic uplift of the Tibetan Plateau:Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3(2):175-187.
doi: 10.1016/j.gsf.2011.11.005
[17] Wang Y, Nie J, Zhang T, et al. Cenozoic tectonic evolution in the western Qaidam Basin inferred from subsurface data[J]. Geosciences Journal, 2010, 14(4):335-344.
doi: 10.1007/s12303-010-0033-1
[18] 王亚东, 张涛, 迟云平, 等. 柴达木盆地西部地区新生代演化特征与青藏高原隆升[J]. 地学前缘, 2011, 18(3):141-150.
[18] Wang Y D, Zhang T, Chi Y P, et al. Cenozoic uplift of the Tibetan Plateau:Evidence from tectonic-sedimentary evolution of the Western Qaidam Basin[J]. Earth Science Frontiers, 2011, 18(3):141-150.
[19] 方向, 江波, 张永庶. 柴达木盆地西部地区断裂构造与油气聚集[J]. 石油与天然气地质, 2006, 27(1):56-61.
[19] Fang X, Jiang B, Zhang Y S. Faulted structure and hydrocarbon accumulation in western Qaidam basin[J]. Oil and Gas Geology, 2006, 27(1):56-61.
[20] Cheng F, Jolivet M, Fu S, et al. Northward growth of the Qimen Tagh Range:A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin[J]. Tectonophysics, 2014, 632:32-47.
doi: 10.1016/j.tecto.2014.05.034
[21] Meng Q R, Fang X. Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau[J]. Geological Society of America Special Papers, 2008, 444:1-24.
[22] Yin A, Dang Y, Zhang M, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2):Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range[J]. Geological Society of America Special Papers, 2007, 433:369-390.
[23] Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3):Structural geology,sedimentation,and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7-8):847-876.
doi: 10.1130/B26232.1
[24] 陈海清. 柴达木盆地柴西南三维区岩性地层圈闭识别技术研究[D]. 青岛:中国海洋大学, 2010.
[24] Chen H Q. A research on the techniques for identifying lithologic stratigraphic traps in the Southwest 3D survey of Chaidamu Basin[D]. Qingdao:Ocean University of China, 2010.
[25] Ji J L, Zhang K X, Clift P D, et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin:Implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46:141-155.
doi: 10.1016/j.gr.2017.02.015
[26] Sun Z, Yang Z, Pei J, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin,China:Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 2005, 237(3-4):635-646.
doi: 10.1016/j.epsl.2005.07.007
[27] Lu H, Xiong S. Magnetostratigraphy of the Dahonggou section,northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288(3-4):539-550.
doi: 10.1016/j.epsl.2009.10.016
[28] Fang X, Zhang W, Meng Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau,Qinghai Province,China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1-2):293-306.
doi: 10.1016/j.epsl.2007.03.042
[29] 徐波. 运用地震属性研究柴达木盆地早新生代断裂特征[D]. 杭州:浙江大学, 2013.
[29] Xu B. Fault characteristics of the Qaidam Basin in early Cenozoic from seismic attributes analysis[D]. Hangzhou:Zheng Jiang University, 2013.
[30] Wu L, Xiao A, Wang L, et al. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault,NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic[J]. Science China Earth Sciences, 2012, 55(6):926-939.
doi: 10.1007/s11430-012-4402-7
[31] 毛黎光, 肖安成, 王亮, 等. 柴达木盆地西北缘始新世晚期古隆起与阿尔金断裂的形成[J]. 岩石学报, 2013, 29(8):2876-2882.
[31] Mao L G, Xiao A C, Wang L, et al. Uplift of NW margin of Qaidam Basin in the Late Eocene:Implications for the initiation of Altyn Fault[J]. Acta Petrologica Sinica, 2013, 29(8):2876-2882.
[32] Qiu N S. Tectono-thermal evolution of the Qaidam Basin,China:Evidence from Ro and apatite fission track data[J]. Petroleum Geoscience, 2002, 8(3):279-285.
doi: 10.1144/petgeo.8.3.279
[33] 罗群, 庞雄奇. 运用断裂控烃理论实现柴达木盆地油气勘探大突破[J]. 石油学报, 2003, 24(2):24-29.
[33] Luo Q, Pang X Q. Application of fault control hydrocarbon theory to realize a great breakthrough of petroleum exploration in Qaidam basin[J]. Acta Petrolei Sinica, 2003, 24(2):24-29.
[34] Pang X Q, Li Y X, Jiang Z X. Key geological controls on migration and accumulation for hydrocarbons derived from mature source rocks in Qaidam Basin[J]. Journal of Petroleum Science and Engineering, 2004, 41(1):79-95.
doi: 10.1016/S0920-4105(03)00145-1
[35] Zeng L, Tang X, Wang T, et al. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs,western Qaidam Basin,northwest China[J]. AAPG Bulletin, 2012, 96(11):2003-2017.
doi: 10.1306/04181211090
[1] 黎绍杰, 李学彪, 姚锦其. 柴达木盆地油气化探应用效果[J]. 物探与化探, 2012, 36(5): 741-748.
[2] 魏祥荣, 龙期华. 柴达木盆地第四系放射性异常及成因机制[J]. 物探与化探, 2006, 30(3): 189-193,198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com