This authors describe a more efficient and adaptive high frequency noise suppression method in which a new adaptive threshold technique is combined with a continuous thresholding function to overcome the shortcoming that existing threshold de-noising technique by wavelet transform is not suitable for seismic data.The continuous hard thresholding function can combine both advantages of soft thresholding function and hard thresholding function,so it can enhance the fidelity of reconstructed signal and reduce the artificial noise.An adaptive threshold scheme is carried out by analyzing the statistical parameters of wavelet subband coefficients like standard deviation,arithmetic mean and geometrical mean in different subbands,which is based on the time-varying and spatial-varying energy distribution feature of nonstationary seismic signal.This threshold can adjust itself automatically with the variation of wavelet coefficient energy in different subbands to meet the requirement of high frequency seismic noise suppression.The actual seismic data processing result indicates that this method can not only raise the signal-to-noise ratio but also protect thoroughly the steep dip angle reflection event and enhance the fidelity of seismic signal after noise elimination.
李雪英, 张晶, 孔祥琦, 侯相辉. 基于离散小波变换的地震资料自适应高频噪声压制[J]. 物探与化探, 2013, 37(1): 165-170.
LI Xue-ying, ZHANG Jing, KONG Xiang-qi, HOU Xiang-hui. HIGH FREQUENCY SEISMIC NOSIE ADAPTIVE SUPPRESSION BASED ON DISCRETE WAVELET TRANSFORM. Geophysical and Geochemical Exploration, 2013, 37(1): 165-170.
[1] Chen G Y,Bui T D,Krzyzak A.Image denoising using neighbouring wavelet[J].Integrated Computer-Aided Engineering,2005,12(1):99-107.[2] Mohideen S K,Perumal S A,Sathik M M.Image de-noising using discrete wavelet transform[J].International Journal of Computer Science and Network Security,2008,8(1):213-216.[3] Gnandurai D,Sadasivam V.An efficient adaptive thresholding technique for wavelet based image denoising[J].International Journal of Information and Communication Engineering,2006,2(2):114-119.[4] Gnanadurai D,Sadasivam V.Image de-noising using double density wavelet transform based adaptive thresholding technique[J].International Journal of Wavelets,Multiresolution and Information Processing,2005,3(1):141-152.[5] Durga M K,Sukanesh R.Resolution enhancement of low dose CT-images using wavelet transform method//Chennai:Proceedings of the Int. Conf. on Information Science and Applications,ICISA,2010.[6] Sambasiva R G,NagaRaju C L,Reddy L S,et al.A novel thresholding technique for adaptive noise reduction[J].International Journal of Computer Science and Network Security,2008,8(12):315-320.[7] Kozowski B.Time series denoising with wavelet transform[J].Journal of telecommunications and information technology,2005,3(1):91-95.[8] Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistical Association,1995,90(432):1200-1224.[9] 夏洪瑞,葛川庆,彭涛.小波时空变阈值去噪方法在可控震源资料处理中的应用[J].石油地球物理勘探,2010,45(1):23-27.[10] Faghih F,Smith M.Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm[J].IEEE Trans. Image Process.,2002,11(9):1062-1071.[11] Donoho D L.De-nosing soft thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.[12] Grace C S,Bin Y,Vattereli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transaction Image Processing,2000,9(9):1532-15460.[13] Grace C S,Bin Y,Vattereli M.Spatially adaptive wavelet thresholding with context modeling for imaged noising[J].IEEE Transaction Image Processing,2000,9(9):1522-1530.[14] Abramovich F,Sapatinas T,Silverman B W.Wavelet thresholding via a Bayesian approach[J].J. Roy. Statist. Soc. B,1998,60(4):725-749.[15] Elyasi I,Zarmehi S.Elimination noise by adaptive wavelet threshold[J].World Academy of Science,Engineering and Technology,2009,56:462-466.[16] Zhang X P,Desai M.Adaptive denoising based on SURE risk[J].IEEE Signal Processing Letter,1998,10(5):265-267.[17] Chen G Y,Bui T D.Multi-wavelet de-noising using neighboring coefficients[J].IEEE Signal Processing Letters,2003,10(7):211-214.[18] Terzija N,Repges M,Luck K,et al.Digital image watermarking using discrete wavelet transform:performance comparison of error correction codes[J].Proceeding of Visualization,Imaging,and Image Processing,2002,364:803.[19] Matz V,Kreidl M,míd R.Signal-to-noise ratio improvement based on the discrete wavelet transform in ultrasonic defectoscopy[J].Acta polytechnica,2004,44(4):61-66.[20] Lang M,Guo H,Odegard J E,et al.Noise reduction using an undecimated discrete wavelet transform[J].IEEE Signal Processing Lett.,1996,3(1):10-12.[21] Bui T D,Chen G Y.Translation invariant de-noising using multiwavelets[J].IEEE Transactions on Signal Processing,1998,46(12):3414-3420.[22] 刘洋,Sergey F,刘财,等.高阶seislet变换及其在随机噪声消除中的应用[J].地球物理学报,2009,52(8):2142-2151.[23] Zhang X P.Thresholding neural network for adaptive noise reduction[J].IEEE Transactions on Neural Networks,2001,12(3):567-584.[24] Sendur L,Selesnick I W.Bi-variate shrinkage with local variance estimation[J].IEEE Signal Processing Letters,2002,9(12):438-441.[25] Aidi W,Xiu L Z.Seismic denosing with curvelet shrinkage[J].Journal of Communication and Computer,2010,7(9):13-17.[26] Daubechies I.Ten lectures on wavelet[J].Proceedings CBMS-NSF Regional Conference Series in Applied Mathematics SIAM,1992,61.