Please wait a minute...
E-mail Alert Rss
 
物探与化探  2013, Vol. 37 Issue (1): 165-170    DOI: 10.11720/wtyht.2013.1.32
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
基于离散小波变换的地震资料自适应高频噪声压制
李雪英1, 张晶1, 孔祥琦2, 侯相辉1
1. 东北石油大学 地球科学学院,黑龙江 大庆 163318;
2. 大庆钻探工程公司 地球物理勘探一公司,黑龙江 大庆 163357
HIGH FREQUENCY SEISMIC NOSIE ADAPTIVE SUPPRESSION BASED ON DISCRETE WAVELET TRANSFORM
LI Xue-ying1, ZHANG Jing1, KONG Xiang-qi2, HOU Xiang-hui1
1. College of Geosciences,Northeast Petroleum University,Daqing 163318,China;
2. NO.1 Geophysical Exploration Company of Daqing Drilling & Exploration Engineering Corporation CNPC,Daqing 163357,China
全文: PDF(1007 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

针对现有的小波变换阈值去噪方法无法适用于地震资料高频噪声压制的缺点,笔者分别对阈值函数和阈值选取方案进行了改进,提出了连续硬阈值函数与自适应阈值相结合的地震资料高频噪声压制方法。连续硬阈值函数兼具软、硬阈值函数的优点,可提高重构地震信号的保真度,减少人为噪声误差;自适应阈值方案可根据非平稳地震数据中的能量时变、空变分布特点,通过引入不同子带小波系数标准差、代数平均值以及几何平均值等统计参数,使阈值能够随不同子带的小波系数能量变化而自动调整,以适应地震资料高频噪声压制的要求。实际地震数据处理结果表明,笔者提出的方法在提高信噪比的同时,可保护陡倾角反射界面信号,提高噪声压制后地震数据的保真度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

This authors describe a more efficient and adaptive high frequency noise suppression method in which a new adaptive threshold technique is combined with a continuous thresholding function to overcome the shortcoming that existing threshold de-noising technique by wavelet transform is not suitable for seismic data.The continuous hard thresholding function can combine both advantages of soft thresholding function and hard thresholding function,so it can enhance the fidelity of reconstructed signal and reduce the artificial noise.An adaptive threshold scheme is carried out by analyzing the statistical parameters of wavelet subband coefficients like standard deviation,arithmetic mean and geometrical mean in different subbands,which is based on the time-varying and spatial-varying energy distribution feature of nonstationary seismic signal.This threshold can adjust itself automatically with the variation of wavelet coefficient energy in different subbands to meet the requirement of high frequency seismic noise suppression.The actual seismic data processing result indicates that this method can not only raise the signal-to-noise ratio but also protect thoroughly the steep dip angle reflection event and enhance the fidelity of seismic signal after noise elimination.

收稿日期: 2011-11-17      出版日期: 2013-02-10
:  P631.4  
基金资助:

国家自然科学基金重点项目(40930422);国家油气重大专项(2011ZX05008-006-42)

作者简介: 李雪英(1972-),男,博士,东北石油大学地球科学学院副教授,主要从事地震波传播与成像研究。
引用本文:   
李雪英, 张晶, 孔祥琦, 侯相辉. 基于离散小波变换的地震资料自适应高频噪声压制[J]. 物探与化探, 2013, 37(1): 165-170.
LI Xue-ying, ZHANG Jing, KONG Xiang-qi, HOU Xiang-hui. HIGH FREQUENCY SEISMIC NOSIE ADAPTIVE SUPPRESSION BASED ON DISCRETE WAVELET TRANSFORM. Geophysical and Geochemical Exploration, 2013, 37(1): 165-170.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2013.1.32      或      https://www.wutanyuhuatan.com/CN/Y2013/V37/I1/165

[1] Chen G Y,Bui T D,Krzyzak A.Image denoising using neighbouring wavelet[J].Integrated Computer-Aided Engineering,2005,12(1):99-107.

[2] Mohideen S K,Perumal S A,Sathik M M.Image de-noising using discrete wavelet transform[J].International Journal of Computer Science and Network Security,2008,8(1):213-216.

[3] Gnandurai D,Sadasivam V.An efficient adaptive thresholding technique for wavelet based image denoising[J].International Journal of Information and Communication Engineering,2006,2(2):114-119.

[4] Gnanadurai D,Sadasivam V.Image de-noising using double density wavelet transform based adaptive thresholding technique[J].International Journal of Wavelets,Multiresolution and Information Processing,2005,3(1):141-152.

[5] Durga M K,Sukanesh R.Resolution enhancement of low dose CT-images using wavelet transform method//Chennai:Proceedings of the Int. Conf. on Information Science and Applications,ICISA,2010.

[6] Sambasiva R G,NagaRaju C L,Reddy L S,et al.A novel thresholding technique for adaptive noise reduction[J].International Journal of Computer Science and Network Security,2008,8(12):315-320.

[7] Kozowski B.Time series denoising with wavelet transform[J].Journal of telecommunications and information technology,2005,3(1):91-95.

[8] Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Statistical Association,1995,90(432):1200-1224.

[9] 夏洪瑞,葛川庆,彭涛.小波时空变阈值去噪方法在可控震源资料处理中的应用[J].石油地球物理勘探,2010,45(1):23-27.

[10] Faghih F,Smith M.Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm[J].IEEE Trans. Image Process.,2002,11(9):1062-1071.

[11] Donoho D L.De-nosing soft thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.

[12] Grace C S,Bin Y,Vattereli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transaction Image Processing,2000,9(9):1532-15460.

[13] Grace C S,Bin Y,Vattereli M.Spatially adaptive wavelet thresholding with context modeling for imaged noising[J].IEEE Transaction Image Processing,2000,9(9):1522-1530.

[14] Abramovich F,Sapatinas T,Silverman B W.Wavelet thresholding via a Bayesian approach[J].J. Roy. Statist. Soc. B,1998,60(4):725-749.

[15] Elyasi I,Zarmehi S.Elimination noise by adaptive wavelet threshold[J].World Academy of Science,Engineering and Technology,2009,56:462-466.

[16] Zhang X P,Desai M.Adaptive denoising based on SURE risk[J].IEEE Signal Processing Letter,1998,10(5):265-267.

[17] Chen G Y,Bui T D.Multi-wavelet de-noising using neighboring coefficients[J].IEEE Signal Processing Letters,2003,10(7):211-214.

[18] Terzija N,Repges M,Luck K,et al.Digital image watermarking using discrete wavelet transform:performance comparison of error correction codes[J].Proceeding of Visualization,Imaging,and Image Processing,2002,364:803.

[19] Matz V,Kreidl M,míd R.Signal-to-noise ratio improvement based on the discrete wavelet transform in ultrasonic defectoscopy[J].Acta polytechnica,2004,44(4):61-66.

[20] Lang M,Guo H,Odegard J E,et al.Noise reduction using an undecimated discrete wavelet transform[J].IEEE Signal Processing Lett.,1996,3(1):10-12.

[21] Bui T D,Chen G Y.Translation invariant de-noising using multiwavelets[J].IEEE Transactions on Signal Processing,1998,46(12):3414-3420.

[22] 刘洋,Sergey F,刘财,等.高阶seislet变换及其在随机噪声消除中的应用[J].地球物理学报,2009,52(8):2142-2151.

[23] Zhang X P.Thresholding neural network for adaptive noise reduction[J].IEEE Transactions on Neural Networks,2001,12(3):567-584.

[24] Sendur L,Selesnick I W.Bi-variate shrinkage with local variance estimation[J].IEEE Signal Processing Letters,2002,9(12):438-441.

[25] Aidi W,Xiu L Z.Seismic denosing with curvelet shrinkage[J].Journal of Communication and Computer,2010,7(9):13-17.

[26] Daubechies I.Ten lectures on wavelet[J].Proceedings CBMS-NSF Regional Conference Series in Applied Mathematics SIAM,1992,61.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com