Please wait a minute...
E-mail Alert Rss
 
物探与化探  2006, Vol. 30 Issue (3): 260-265    
  论文 本期目录 | 过刊浏览 | 高级检索 |
地震岩石物理分析软件系统设计和实现
马中高1,2, 周巍2, 孙成龙2
1. 成都理工大学, 四川 成都 610059;
2. 中石化石油勘探开发研究院 南京石油物探研究所, 江苏 南京 210014
THE DESIGN AND IMPLEMENTATION OF THE SOFTWARE PACKAGE FOR ROCK PHYSICS ANALYSIS
MA Zhong-gao1,2, ZHOU Wei2, SUN Cheng-long2
1. Chengdu University of Technology, Chengdu 610059, China;
2. Nanjing Institute of Geophysical Prospecting, SINOPEC, Nanjing 210014, China
全文: PDF(1579 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

介绍了岩石物理分析软件系统的总体设计思想和软件实现思路,给出了系统的功能层次结构,做了具体的功能描述。系统采用面向对象设计方法和跨平台Qt开发工具开发,可移植性和扩充性强,具有灵活方便的图形界面和交互功能,是集岩芯实验测试、测井和地震为一体,是理论和实验相结合、方便实用的分析工具。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫国翔
尹秉喜
杨勇
关键词 电性源瞬变电磁法全区视电阻率多分量磁场强度    
Abstract

Rock physics lies in the study of the physical properties of rocks related to seismic properties, especially the quantitative study of the relationship between elastic properties of rocks and their seismic properties with various fluid distributions. This relationship is important in the prospecting and exploitation of oil and gas, and hence rock physics is highly praised as a tool for"opening the door to quantitative interpretation". This paper has briefly reviewed the development of the rock physics and described the designing objects of the rock physics analysis system (RPAS). By combining core measurements with well logging and seismic information, RPAS provides a convenient tool for theoretical and experimental analysis. The ideas behind the design and implementation of RPAS are given, and the user's needs are analyzed. This paper describes the framework of RPAS and its concrete functions. Developed by object-oriented programming and Qt, RPAS is characterized by friendly graphical interface and flexible interactive manipulations. It is open and easy to transplant.

Key wordstransient electromagnetic method    all-time apparent resistivity    multi-component    magnetic field intensity
收稿日期: 2005-09-15      出版日期: 2006-06-24
: 

P631.4

 
基金资助:

中国石油化工股份有限公司重大科技攻关项目(编号:P01062)

作者简介: 马中高(1964-),男,教授级高级工程师,1985年毕业于原成都地质学院石油物探专业,1988年获硕士学位,在读博士,现从事地震方法和岩石物理研究工作,公开发表学术论文数篇.
引用本文:   
马中高, 周巍, 孙成龙. 地震岩石物理分析软件系统设计和实现[J]. 物探与化探, 2006, 30(3): 260-265.
MA Zhong-gao, ZHOU Wei, SUN Cheng-long. THE DESIGN AND IMPLEMENTATION OF THE SOFTWARE PACKAGE FOR ROCK PHYSICS ANALYSIS. Geophysical and Geochemical Exploration, 2006, 30(3): 260-265.
链接本文:  
https://www.wutanyuhuatan.com/CN/      或      https://www.wutanyuhuatan.com/CN/Y2006/V30/I3/260

[1] 陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2000.
[2] Toksäz M N, Cheng C H, Timur A.Velocities of seismic waves in porous rocks[J].Geophysics, 41: 621.
[3] Gassmann F.Elastic waves through a packing of spheres[J].Geophysics,1951,16:673.
[4] White J E.Seismic waves[M].New York: McGraw-hill Book Co Inc,1965.
[5] Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher-frequency range[J].Journal of the Acoustical Society of America,1956,28(1):168.
[6] Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid :Ⅰ.Low frequency range and Ⅱ.Higher-frequency range[J].J Acoust Soc Am, 1965,28:168.
[7] Berryman J G.Elastic wave propagation in fliud-saturated porous media[J].J Acoust Soc Am,1981,69:416.
[8] 马中高,邓道静.岩石物理性质研究技术[J].勘探地球物理进展,2003,26(5-6):387.
[9] Domenico S N.Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir[J]. Geophysics,1976,41:882.
[10] Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M].Cambridge University Press, 1998.
[11] Wyllie M R J,Gardner G H F,Gregory A R.Studies of elastic wave attenuation in porous media[J].Geophysics,1963,27:569.
[12] White J E.Computed seismic speeds and attenuation in rocks with partial gas saturation[J].Geophysics, 1975, 40:224.
[13] O'Connell R J,Budiansky B.Viscoelastic properties of fliud saturated cracked solid[J].J Geophy Res,1977,82:5701.
[14] Dvorkin J,Nur A.Dynamic poroelasticity: a unified model with the Squirt flow and the Biot mechanism[J].Geophysics,1993,58:524.
[15] Dvorkin J,Nolen-Hoeksema R,Nur A.The squirt flow mechanism:macroscopic description[J].Geophysics,1994,59:428.
[16] Dvorkin J Gutierrez M A.Textural sorting effect on elastic velocities,Part II:elasticity of a bimodal grain mixture SEG 2001.1768.
[17] 马中高,管路平,贺振华,等.模型正演优选地震属性进行储层预测[J].石油学报,2003,24(6):35.
[18] 鲁卡·考森蒂诺.油藏评价一体化研究[M].李阳,王大锐,等 译.北京:石油工业出版社,2003.
[19] Wang Z.Fundamental of seismic rock physics[J].Geophysics,2001,66:398.
[20] Batzle M, Wang Z.Seismic properties of pore fluids[J].Geophysics,1992,57:1396.
[21] McCain, W D.The properties of petroleum fluids[M].Tulsa:PennWell Pub Co,1990.
[22] 云美厚,易维启.孔隙流体地震特征的计算[J].石油物探,2001,40(2):13.
[23] Voit W.Lehrbuck der Kristallphysik[M].Teubner:Leipzig,1928.
[24] Reuss A.Berechnung der fliessgrense von mischkristallen auf grund der plastizitatsbedinggung fun einkristalle[J].Zeitschrift fur Angewandte Mathematik and Mechanik,1929,9:49.
[25] Hill R.The elastic behavior of crystalline aggregate[M].London:Pro Phys Soc,1952,A65:349.
[26] Nur A.Critical porosity and seismic velocity in rocks[J].EOS Trans Am Geophys Union,1992,73:43.
[27] Hashin Z,Shtrikman S.A variational approach to the elastic behavior of multiphase materials[J].J Mech Phys Solid,1963,11:127.
[28] 马中高.计算干岩石的体积模量:修正的临界孔隙度模型.第21届中国地球物理学会年刊.长春:吉林大学出版社, 2005.
[29] Mavko G,Chan C,Mukerji T.Fluid substitution:Esaimating changes in vp without knowing vs[J].Geophysics,1995,60:1750.
[30] Mavko G,Jzba D.Estimating grain-scale fluid effects on velocity dispersion in rocks[J].Geophysics,1991,56:1940.
[31] Xu S,White R E.A new velocity model for clay-sand mixtures[J].J Geophys Prospecting,1995,43:91.
[32] Kreif M,Garat J,Stellingwerff J,Ventre J.A petrophysical interpretation using the velocities of P and S waves(full waveform sonic)[J].The Log Analyst,1990,31:355.
[33] Castagna J P,Batzle M L,Eastwood R L.Relationships between compressional wave and shear wave velocities in clastic silicate rocks[J].Geophysics,1985,50(5):571.
[34] 马中高,解吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展,2005,20(4):905.
[35] Eberhart-Phillips D,Han D-H,Zoback M D.Empirical relationships among seismic velocity, effective pressure, porosity,and Clay content in sandstone[J].Geophysics,1989,54(1):82.
[36] 马中高,伍向阳.有效压力对纵横波速度的影响[J].勘探地球物理进展,2006,29(3).
[37] Gardner G H F,Gardner L W,Gregory A R. Formation velocity and density:The diagnostic basics for stratigraphic traps[J].Geophysics,1974,39(6):770.
[38] Castagna J P,Batzle M L,Kan T K.Rock physics:The link between rock properties and AVO response.Castagna J P, Backus M.Offset Dependent Reflectivity:Theory and Practice of AVO Analysis, Investigations in Geophysics.Tulsa:Society of Exploration Geophysicists,1993,(8):135.
[39] Han D H,Nur A,Morgan D.Effects of porosity and clay content on Wave velocities in sandstones[J].Geophysics,1986,51(11):2093.

[1] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[2] 罗维斌, 丁志军, 高曙德, 张星. 测量磁场水平分量Hy的电性源广域电磁测深法[J]. 物探与化探, 2021, 45(1): 46-56.
[3] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[4] 伏海涛, 罗维斌, 丁志军, 余其林, 张世宽. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309-1319.
[5] 孙丽霞, 张智, 钱忠平, 王赟. 第85届SEG年会多分量地震亮点评述[J]. 物探与化探, 2018, 42(1): 75-86.
[6] 闫国翔, 尹秉喜, 杨勇. 电性源瞬变电磁全区视电阻率定义[J]. 物探与化探, 2017, 41(5): 933-938.
[7] 蒋邦远, 杜庆丰. TEM中心回线电动势响应换算磁场响应求解全区视电阻率及1-D直接反演的实用方法[J]. 物探与化探, 2017, 41(4): 758-768.
[8] 卢云飞, 薛国强, 邱卫忠, 周楠楠, 侯东洋. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2): 354-359.
[9] 张银松, 李斌, 张家刘. 瞬变电磁法在水域地质勘察中的应用[J]. 物探与化探, 2016, 40(1): 160-162.
[10] 钟幼生, 韩自强, 罗姣, 冯兵. 关于可控源音频大地电磁法探测深度的探讨[J]. 物探与化探, 2015, 39(4): 768-774.
[11] 蒋邦远. TEM中心回线电动势求解全区视电阻率的实用特性[J]. 物探与化探, 2015, 39(3): 530-536.
[12] 赵越, 王祎鹏, 李貅. 大定源回线TEM地空系统全域视电阻率定义[J]. 物探与化探, 2015, 39(2): 352-357.
[13] 郝延松, 胡博, 于润桥, 吴莉佳. 磁性源瞬变电磁法视电阻率计算方法[J]. 物探与化探, 2012, 36(6): 1034-1039.
[14] 李云波, 吴燕清. 新型矿井多波多分量地震反射波观测系统的设计[J]. 物探与化探, 2012, 36(1): 99-102.
[15] 杨生. TEM中心回线法计算考虑关断时间的全区视电阻率[J]. 物探与化探, 2008, 32(6): 647-651,664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com