Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1164-1172    DOI: 10.11720/wtyht.2025.0183
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
SOTEM法分量探测能力对比及应用实例
潘远1,2,3(), 罗聪1,2,3(), 徐林1,2,3, 陈品雄1,2,3, 傅宏毅1,3
1.贵州煤田地球物理勘探有限责任公司,贵州 贵阳 550014
2.贵州省煤田地质局 一七四队,贵州 贵阳 550081
3.富矿精开与环境保护贵州省院士工作站,贵州 贵阳 550000
Comparison of component detection capabilities using the short-offset transient electromagnetic method and an application example
PAN Yuan1,2,3(), LUO Cong1,2,3(), XU Lin1,2,3, CHEN Pin-Xiong1,2,3, FU Hong-Yi1,3
1. Guizhou Coalfield Geophysical Prospecting Co.,Ltd.,Guiyang 550014,China
2. No.174 Geological Team,Guizhou Coal Field Geology Bureau,Guiyang 550081,China
3. Academician Workstation for Precision Development of Rich Mineral Resources and Environmental Protection of Guizhou Province,Guiyang 550000,China
全文: PDF(4836 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了验证SOTEM在复杂地形条件下煤矿防治水中的应用效果,本文利用SOTEM方法模拟分析了Hz分量与Ex分量对地层的探测能力,并在贵州黔北地区某煤矿开展了试验工作,本次试验布置4条剖面,用SOTEMSoft软件进行反演,并对反演结果进行了钻探验证。试验结果表明:在赤道向测量时Hz分量具有较强的探测低阻异常体的能力;Ex分量能探测低阻异常体和高阻异常体且探测能力相当,探测低阻体时沿赤道向测量,探测高阻体时沿轴向测量。SOTEM法能在复杂地形条件下精准定位煤矿水害集中区域,试验证明了SOTEM法在贵州黔北地区煤矿防治水中的适用性及准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘远
罗聪
徐林
陈品雄
傅宏毅
关键词 SOTEM短偏移距电性源煤矿水害    
Abstract

This study aims to demonstrate the effects of the electric-source short-offset transient electromagnetic method(SOTEM) for water hazard prevention and control in coal mines under complex topographical conditions.To this end,the detection capabilities of the Hx and Ex components were simulated and analyzed using the SOTEM method,along with field tests in a coal mine in northern Guizhou.During the tests,four profiles were arranged and the SOTEMSoft software was used for inversion, with the inversion results verified by drilling.The results show that during measurement along the equatorial direction,the Hz component exhibited a high capability to detect low-resistivity anomalies.In contrast,the Ex component exhibited a comparable capability in detecting both low-resistivity(along the equatorial direction) and high-resistivity anomalies(along the axial direction).The SOTEM technique can accurately locate the most severe water hazard areas in coal mines under complex topographical conditions.The feasibility and accuracy of the SOTEM method for water hazard prevention and control were validated through the application in coal mines in northern Guizhou.

Key wordsshort-offset transient electromagnetic method(SOTEM)    short-offset    electric source    water hazards in coal mine
收稿日期: 2025-06-03      修回日期: 2025-07-30      出版日期: 2025-10-20
ZTFLH:  P631.4  
基金资助:贵州省科技计划项目(黔科合平台KXJZ[2024]003)
通讯作者: 罗聪(1985-),男,高级工程师,主要从事电磁法正反演研究工作。Email:249288584@qq.com
作者简介: 潘远(1986-),男,工程师,主要从事地球物理勘查工作。Email:75681551@qq.com
引用本文:   
潘远, 罗聪, 徐林, 陈品雄, 傅宏毅. SOTEM法分量探测能力对比及应用实例[J]. 物探与化探, 2025, 49(5): 1164-1172.
PAN Yuan, LUO Cong, XU Lin, CHEN Pin-Xiong, FU Hong-Yi. Comparison of component detection capabilities using the short-offset transient electromagnetic method and an application example. Geophysical and Geochemical Exploration, 2025, 49(5): 1164-1172.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0183      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1164
Fig.1  SOTEM赤道向装置示意
Fig.2  SOTEM轴向装置示意
Fig.3  正演模拟示意
Fig.4  垂直磁场不同时刻的平面分布
Fig.5  水平电场不同时刻的平面分布
Fig.6  各种地电模型示意
Fig.7  均匀半空间赤道向测量反演结果对比
Fig.8  H型地层赤道向测量反演结果对比
Fig.9  K型地层轴向测量反演结果对比
厚度/m 岩性描述 电阻率/Ω·m
第四系 0~34.30 黏土、砂土、泥砾、砂砾等 50~600
三叠系 下统 夜郎组 T1y3 >200 粉砂岩为主 100~300
T1y2 201.92 ~ 285.10 256.09 粉砂质泥岩、灰岩、薄层石灰岩 500~1200
T1y1 5.94 ~ 17.94 11.56 粉砂岩、泥岩、粉砂质泥岩夹泥灰岩 100~300
二叠系 乐平统 长兴组 P3c 19.30 ~ 26.72 20.99 石灰岩为主 300~1200
龙潭组 P3l 129.32 ~ 161.37 138.46 粉砂岩、泥岩、细砂岩、灰岩、炭质泥岩及煤层 30~150
阳新统 茅口组 P2m >100 石灰岩 800~7000
Table 1  矿区地层简表
Fig.10  工程布置
Fig.11  SOTEM赤道向试验线电阻率断面
Fig.12  SOTEM轴向试验线电阻率断面
[1] 何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.
doi: 10.6038/cjg2018L0003
[1] He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1):1-8.
[2] 薛国强, 陈卫营, 武欣, 等. 电性源短偏移距瞬变电磁研究进展[J]. 中国矿业大学学报, 2020, 49(2):217-228.
[2] Xue G Q, Chen W Y, Wu X, et al. Review on research of short-offset transient electromagnetic method[J]. Journal of China University of Mining &Technology, 2020, 49(2):217-228.
[3] 薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013, 56(1):255-261.
[3] Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013, 56(1):255-261.
[4] 薛国强, 闫述, 陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展, 2014, 29(1):177-181.
[4] Xue G Q, Yan S, Chen W Y. Research prospect to grounded-wire TEM with short-offset[J]. Progress in Geophysics, 2014, 29(1):177-181.
[5] 陈卫营, 薛国强. 电性源短偏移距瞬变电磁法数据处理软件系统SOTEMsoft[J]. 地球科学与环境学报, 2021, 43(6):1050-1056.
[5] Chen W Y, Xue G Q. Data processing software SOTEMsoft for electric source short-offset transient electromagnetic method[J]. Journal of Earth Sciences and Environment, 2021, 43(6):1050-1056.
[6] 陈卫营, 薛国强, 李海. SOTEM野外数据采集中的关键参数分析[J]. 物探与化探, 2024, 48(5):1169-1175.
[6] Chen W Y, Xue G Q, Li H. Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data[J]. Geophysical and Geochemical Exploration, 2024, 48(5):1169-1175.
[7] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[7] Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South University Press, 2007.
[8] Zhou N N, Xue G Q, Hou D Y, et al. An investigation of the effect of source geometry on grounded-wire TEM surveying with horizontal electric field[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1):143-151.
[9] 黄仕茂, 杨光, 王军成, 等. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5):1208-1214.
[9] Huang S M, Yang G, Wang J C, et al. Application cases of the short-offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine[J]. Geophysical and Geochemical Exploration, 2024, 48(5):1208-1214.
[10] 薛国强, 闫述, 陈卫营. 电性源瞬变电磁短偏移探测方法[J]. 中国有色金属学报, 2013, 23(9):2365-2370.
[10] Xue G Q, Yan S, Chen W Y. Exploration technique due to grounded wire source with short-offset[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2365-2370.
[11] 陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016, 59(2):739-748.
doi: 10.6038/cjg20160231
[11] Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016, 59(2):739-748.
[12] 陈稳, 薛国强, 陈卫营, 等. SOTEM多分量激电响应特性分析[J]. 地球物理学进展, 2019, 34(5):1859-1865.
[12] Chen W, Xue G Q, Chen W Y, et al. Multi-component response of SOTEM with IP effect[J]. Progress in Geophysics, 2019, 34(5):1859-1865.
[13] 陈卫营, 薛国强. SOTEM一维等效源反演方法[J]. 物探与化探, 2016, 40(2):411-416.
[13] Chen W Y, Xue G Q. 1-D image source inversion of SOTEM data[J]. Geophysical and Geochemical Exploration, 2016, 40(2):411-416.
[14] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM 研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2):354-359.
[14] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017, 41(2):354-359.
[15] 侯东洋, 薛国强, 陈卫营. SOTEM与CSAMT对低阻层的分辨能力比较[J]. 物探与化探, 2016, 40(1):185-189.
[15] Hou D Y, Xue G Q, Chen W Y. Distinguishing capability of SOTEM and CSAMT for low resistivity layer[J]. Geophysical and Geochemical Exploration, 2016, 40(1):185-189.
[16] 陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5):1226-1232.
[16] Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1226-1232.
[17] 薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017, 41(2):381-384.
[17] Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical source short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):381-384.
[18] 陈卫营, 薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探, 2015, 39(4):775-779.
[18] Chen W Y, Xue G Q. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration, 2015, 39(4):775-779.
[1] 薛国强. 短偏移距瞬变电磁法探测技术与应用研究新进展[J]. 物探与化探, 2024, 48(5): 1165-1168.
[2] 陈卫营, 薛国强, 李海. SOTEM野外数据采集中的关键参数分析[J]. 物探与化探, 2024, 48(5): 1169-1175.
[3] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[4] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[5] 李海, 赵攀, 李柯颖, 刘峥. 电性源瞬变电磁法虚拟波场解析推导[J]. 物探与化探, 2024, 48(5): 1193-1198.
[6] 饶丽婷, 武欣, 郭睿, 党博, 党瑞荣. 基于监督下降法的短偏移距瞬变电磁快速反演研究[J]. 物探与化探, 2024, 48(5): 1199-1207.
[7] 黄仕茂, 杨光, 王军成, 罗传根, 徐明钻, 周楠楠, 赵鹏. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5): 1208-1214.
[8] 李贺, 李貅, 戚志鹏, 曹华科. 孔—巷瞬变电磁隧道不良地质体超前预报方法研究[J]. 物探与化探, 2024, 48(5): 1215-1222.
[9] 李昊锦, 毛玉蓉, 周磊, 谢兴兵, 郭庆明, 刘灿, 柯相彬, 贺煜斐. 井孔瞬变电磁短偏移距远探测能力研究[J]. 物探与化探, 2023, 47(6): 1563-1572.
[10] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[11] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[12] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[13] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[14] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[15] 李荡, 郑采君, 林品荣, 王珺璐, 李建华, 李勇. 基于电容补偿技术的电性源CSAMT高频供电研究[J]. 物探与化探, 2018, 42(6): 1253-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com