Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1633-1642    DOI: 10.11720/wtyht.2024.1544
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
无人机噪声对半航空瞬变电磁数据的影响分析
王志宏1(), 张诺亚2,3, 胡杉杉2,3, 郑梓强2,3, 刘玉超2,3, 周正2,3, 孙怀凤2,3()
1.核工业航测遥感中心,河北 石家庄 050002
2.山东大学 岩土与地下工程研究院,山东 济南 250061
3.山东大学 地球电磁探测研究所,山东 济南 250061
Impacts of drone noise on semi-airborne transient electromagnetic data
WANG Zhi-Hong1(), ZHANG Nuo-Ya2,3, HU Shan-Shan2,3, ZHENG Zi-Qiang2,3, LIU Yu-Chao2,3, ZHOU Zheng2,3, SUN Huai-Feng2,3()
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China
2. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China
3. Laboratory of Earth Electromagnetic Exploration, Shandong University, Jinan 250061, China
全文: PDF(4475 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

无人机作为半航空瞬变电磁的飞行平台,其本身会产生电磁信号,对采集的瞬变电磁信号产生影响。本文研究了半航空瞬变电磁数据采集过程中无人机产生的噪声对采集数据的影响,通过开展野外试验、系统性能测试等,分析了不同转速、不同吊挂长度、不同飞行高度、不同飞行速度对无人机噪声的影响,提出了通过确定最优吊挂长度、加入屏蔽层等措施进行无人机噪声的压制方法。本文研究基于KWT-X8L-25八旋翼无人机开展,其研究过程与研究思路同样适用于其他型号的无人机,可以为半航空瞬变电磁飞行平台的遴选提供借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志宏
张诺亚
胡杉杉
郑梓强
刘玉超
周正
孙怀凤
关键词 半航空瞬变电磁无人机噪声飞行高度    
Abstract

As a semi-airbone transient electromagnetic (TEM) platform, drones inherently generate electromagnetic signals that may interfere with the collected transient electromagnetic data. This study investigated the impacts of drone noise on the collected data. Through outdoor experiments and systematic performance testing, this study analyzed the impacts of drone noise under varying rotor speeds, suspension lengths, flight height, and flight speeds. Accordingly, this study proposed methods for suppressing drone noise, such as determining the optimal suspension length and incorporating shielding layers. The study was conducted using the KWT-X8L-25 octocopter drones, but the research methodology and philosophy are also applicable to other drone models, thus serving as a reference for the selection of semi-airborne TEM platforms.

Key wordssemi aviation transient electromagnetic    drone noise    flight altitude
收稿日期: 2023-12-19      修回日期: 2024-06-15      出版日期: 2024-12-20
ZTFLH:  P631.1  
基金资助:国家重点研发计划项目(2022YFC3005601);中国核工业地质局基础地质项目“松辽盆地东部地区航空物探调查”(202115);及“地空电磁法铀矿勘查关键技术研究及应用”(202242-5)
通讯作者: 孙怀凤(1982-),男,教授,主要从事航空电磁法理论与装备方面的研究。Email: sunhuaifeng@email.sdu.edu.cn
引用本文:   
王志宏, 张诺亚, 胡杉杉, 郑梓强, 刘玉超, 周正, 孙怀凤. 无人机噪声对半航空瞬变电磁数据的影响分析[J]. 物探与化探, 2024, 48(6): 1633-1642.
WANG Zhi-Hong, ZHANG Nuo-Ya, HU Shan-Shan, ZHENG Zi-Qiang, LIU Yu-Chao, ZHOU Zheng, SUN Huai-Feng. Impacts of drone noise on semi-airborne transient electromagnetic data. Geophysical and Geochemical Exploration, 2024, 48(6): 1633-1642.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1544      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1633
Fig.1  接收系统主要组成部分
Fig.2  接收机与接收线圈
参数 指标
采样类别 连续采集
采样速度/位数 256 ksps/24bit
同步方式 秒脉冲PPS
接收线圈面积 56 m2
续航时间 >8 h
SD卡存储容量 32 GB
系统带宽 ≥40 kHz
USB传输速度 平均1 MB/s
姿态/GNSS采样率 5 Hz
输入动态范围 >60 dB
Table 1  接收系统主要技术指标
Fig.3  KWT-X8L-25无人机
项目 参数指标
最大翼展 3180 mm±20 mm
空机质量 19 kg±0.5 kg
空载起飞质量 35 kg±0.5 kg
推荐最大起飞质量 ≤60.5 kg
任务载重 ≤25 kg
空载悬停时间 ≥60 min(海拔1000 m以下,25 ℃)
满载悬停时间 ≥25 min(海拔1000 m以下,25 ℃)
最大上升速度 4 m/s
最大下降速度 2 m/s
最大飞行速度 15 m/s
相对爬升高度 4000 m(平原)
工作海拔 5000 m(相对爬升2000 m)
抗风能力 7级风
Table 2  KWT-X8L-25无人机主要技术指标
Fig.4  半航空瞬变电磁接收系统集成于无人机平台
Fig.5  接收系统本底噪声测试结果
Fig.6  背景噪声波形(上)及其频谱(下)
Fig.7  不同转速下采集的原始数据及频谱
Fig.8  地面静态参考噪声信号(a)及频谱(b)
Fig.9  不同吊挂长度信号频谱
频点 吊挂长度
6 m 8 m 10 m 12 m
22 kHz 28.36 2.924 6.838 3.904
45 kHz 9.082 7.331
Table 3  4种吊挂长度无人机高频信号幅值
Fig.10  试验区地理位置及航线设计
Fig.11  不同飞行高度的原始数据(左)及叠加积分后的数据(右)
Fig.12  空中悬停测试结果
Fig.13  不同飞行速度的原始数据(左)及叠加积分的数据(右)
[1] 林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报, 2021, 64(9):2995-3004.
doi: 10.6038/cjg2021P0409
[1] Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics, 2021, 64(9):2995-3004.
[2] 张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017, 32(4):1735-1741.
[2] Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017, 32(4):1735-1741.
[3] Nabighian M N. Electromagnetic methods in applied geophysics[M]. Tulsa,USA: SEG Books, 1988:217-231.
[4] Elliott P. New airborne electromagnetic method provides fast deep-target data turnaround[J]. The Leading Edge, 1996, 15(4):309-310.
[5] Smith R S, Annan A P, McGowan P D. A comparison of data from airborne,semi-airborne,and ground electromagnetic systems[J]. Geophysics, 2001, 66(5):1379-1385.
[6] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne transient EM (GREATEM)[J]. Exploration Geophysics, 1998, 29(1/2):61-64.
[7] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai,north-eastern Japan[J]. Exploration Geophysics, 2009, 40(1):1-7.
[8] 张良. 半航空瞬变电磁接收机研制[D]. 成都: 成都理工大学, 2017.
[8] Zhang L. Development of semi-aeronautical transient electromagnetic receiver[D]. Chengdu: Chengdu University of Technology, 2017.
[9] Wu X, Xue G Q, Fang G Y, et al. The development and applications of the semi-airborne electromagnetic system in China[J]. IEEE Access, 2019, 7:104956-104966.
[10] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11):3640-3650.
[10] Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics, 2013, 56(11):3640-3650.
[11] 符磊, 林君, 王言章, 等. 磁通负反馈空心线圈传感器特性和噪声研究[J]. 仪器仪表学报, 2013, 34(6):113-119.
[11] Fu L, Lin J, Wang Y Z, et al. Research on characteristic and noise of magnetic flux negative feedback air coil sensor[J]. Chinese Journal of Scientific Instrument, 2013, 34(6):113-119.
[12] 张雨默, 袁贵扬, 黎东升, 等. 基于STM32的时域电磁标准信号源研制[J]. 实验室研究与探索, 2015, 34(9):62-65,69.
[12] Zhang Y M, Yuan G Y, Li D S, et al. The development of transient electromagnetic standard signal source based on ARM[J]. Research and Exploration in Laboratory, 2015, 34(9):62-65,69.
[13] 李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都: 成都理工大学, 2015.
[13] Li L L. Research on key technologies of semi-aeronautical transient electromagnetic transmitter[D]. Chengdu: Chengdu University of Technology, 2015.
[14] 苏发. 半航空时间域瞬变电磁接收系统设计[D]. 长春: 吉林大学, 2016.
[14] Su F. Design of semi-aeronautical time domain transient electromagnetic receiving system[D]. Changchun: Jilin University, 2016.
[15] Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017, 32(5):2222-2229.
[16] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9):3145-3152.
[16] Li S Y, Lin J, Yang G H, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013, 56(9):3145-3152.
[17] Wang Y, Ji Y J, Li S Y, et al. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals[J]. Exploration Geophysics, 2013, 44(4):229-237.
[18] 陈斌, 陆从德, 刘光鼎. 基于核主成分分析的时间域航空电磁去噪方法[J]. 地球物理学报, 2014, 57(1):103-111.
[18] Chen B, Lu C D, Liu G D. A denoising method based on kernel principal component analysis for airborne time-domain electromagnetic data[J]. Chinese Journal of Geophysics, 2014, 57(1):103-111.
[19] Li D S, Wang Y, Lin J, et al. Electromagnetic noise reduction in grounded electrical-source airborne transient electromagnetic signal using a stationarywavelet-based denoising algorithm[J]. Near Surface Geophysics, 2017, 15(2):163-173.
[20] Ji Y J, Wu Q, Wang Y, et al. Noise reduction of grounded electrical source airborne transient electromagnetic data using an exponential fitting-adaptive Kalman filter[J]. Exploration Geophysics, 2018, 49(3):243-252.
[21] Ji Y J, Li D S, Yu M M, et al. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal[J]. Journal of Applied Geophysics, 2016, 128:1-7.
[22] Shi Z Y, Liu L H, Xiao P, et al. Applying transmission line theory to study the transmitting turn-off current in a long grounded wire[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10):5112-5122.
[23] 陈成栋. 半航空瞬变电磁数据采集设计和数据校正研究[D]. 济南: 山东大学, 2021.
[23] Chen C D. Research on data acquisition design and data correction of semi-airborne transient electromagnetic data[D]. Jinan: Shandong University, 2021.
[24] Sun H F, Zhang N Y, Li D R, et al. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas[J]. Tunnelling and Underground Space Technology, 2023, 132:104893.
[25] Liu R, Sun H F, Liu D, et al. A joint application of semi-airborne and in-tunnel geophysical survey in complex limestone geology[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(6):226.
[1] 冯威, 冯浩, 肖立江, 陈品明, 刘东, 王用鑫, 周小生, 孙怀凤, 王震. 基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法[J]. 物探与化探, 2024, 48(3): 812-819.
[2] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[3] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[4] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[5] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[6] 薛典军. 航磁测量中飞行高度质量控制的方法技术[J]. 物探与化探, 2001, 25(4): 253-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com