Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 638-647    DOI: 10.11720/wtyht.2023.1578
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用
游越新1,2(), 邓居智1,2(), 陈辉1,2, 余辉1,2, 高科宁1,2
1.东华理工大学 核资源与环境国家重点实验室,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang, Yunnan
YOU Yue-Xin1,2(), DENG Ju-Zhi1,2(), CHEN Hui1,2, YU Hui1,2, GAO Ke-Ning1,2
1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China
2. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013, China
全文: PDF(6931 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

云南澜沧老厂是三江特提斯成矿带南段最重要的多金属矿区之一,经多年开采后浅部资源已近枯竭。近年来矿区深部新发现了花岗斑岩和斑岩型多金属矿化,凸显深部多金属的找矿潜力。为查明研究区深部控矿地层和构造的赋存情况,助力深部找矿突破,本文采用大功率激电法和音频大地电磁法对矿区深部结构进行探测。对采集的激电和电磁数据进行处理和反演后,获得了研究区的激电异常分布和深部电性结构特征,结合区域地质资料,得出以下主要结论:测区西北部的低阻、高极化异常为地表铁锰矿、银锰矿和深部多金属矿化的共同反映,测区中东部的高阻高极化异常与深部多金属矿化有关。中上石炭统灰岩及白云岩地层西厚东薄,其中西侧地层向SW方向倾伏,东侧地层上覆于下石炭统依柳组;隐伏花岗斑岩向NE方向倾伏,其深部2 300~2 800 m水平范围段与深断裂的耦合部位为深部多金属矿化有利区。将大功率激电法和音频大地电磁法相结合可提升深部多金属矿探测的可靠性,指导后续钻孔布设。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游越新
邓居智
陈辉
余辉
高科宁
关键词 老厂多金属矿区大功率激电音频大地电磁综合物探深部找矿    
Abstract

Laochang, Lancang, Yunnan is one of the most important polymetallic mining areas in the southern part of Sanjiang Tethys metallogenic belt. After years of mining, the shallow resources are nearly exhausted. In recent years, granite porphyry and porphyry polymetallic mineralization have been newly discovered in the deep part of the mining area, highlighting the prospecting potential of deep polymetallic deposits. In order to trace the occurrence of deep ore-controlling strata and structures in the study area and help to make a breakthrough in deep ore prospecting, high-power induced polarization method and audio magnetotelluric method were implemented to image the deep structure situated. Results obtained from the inversion of the measured induced polarization and electromagnetic data recuperated the distribution of induced polarization anomalies and the characteristics of deep electrical structure within the study area. Combined with the available regional geological settings, the main conclusions are as follows: The low resistance and high polarization anomalies in the northwest of the survey area are deeply related to the surface ferromanganese, silver manganese, and deep polymetallic mineralization, and the high resistance and high polarization anomalies in the middle and east of the survey area are in good agreement with the deep polymetallic mineralization. The upper Carboniferous limestone and dolomite strata are thick in the west and thin in the east, with the west strata dipping to SW and the east strata overlying the Yiliu Formation of the lower Carboniferous. The concealed granite porphyry dips in NE direction, and the coupling part between its deep 2 300~2 800 m horizontal section and deep fault is a favorable area for deep polymetallic mineralization. Notably, joint interpretation yielded from the high-power induced polarization method and the audio magnetotelluric method applied improved the reliability of deep polymetallic ore detection and provided more information of positioning the subsequent drilling layout.

Key wordsLaochang polymetallic mining area    high-powerinduced polarization    audio frequency magnetotelluric    comprehensive geophysical prospecting    deep ore prospecting
收稿日期: 2022-11-22      修回日期: 2023-02-18      出版日期: 2023-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42130811);国家自然科学基金项目(41864004);江西省主要学科学术带头人培养计划项目(20204BCJL23058);核资源与环境国家重点实验室开放基金(2022NRE18);核资源与环境国家重点实验室开放基金(2020NRE26);自然资源部深地科学与探测技术实验室开放课题(Sinoprobe Lab 202214)
通讯作者: 邓居智(1972-),男,教授,主要从事资源地球物理勘探和电磁法正反演研究工作。Email:jzhdeng@ecut.edu.cn
作者简介: 游越新(1998-),男,硕士研究生在读,研究方向为勘探地球物理。Email:2020110093@ecut.edu.cn
引用本文:   
游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
YOU Yue-Xin, DENG Ju-Zhi, CHEN Hui, YU Hui, GAO Ke-Ning. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang, Yunnan. Geophysical and Geochemical Exploration, 2023, 47(3): 638-647.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1578      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/638
Fig.1  云南省澜沧地区区域地质简图(修自文献[3])
分层代号 主要岩性 含矿性 旋回划分
C 1 8 凝灰岩、沉凝灰岩 含矿
火山角砾凝灰岩
C 1 7β 玄武岩
熔结凝灰岩 含矿
C 1 5 + 6 凝灰岩、沉凝灰岩 主矿层
C 1 4 凝灰角砾岩
C 1 3α 集块岩
安山岩
C 1 2β 玄武岩
熔结角砾岩
C 1 1 熔结角砾岩
安山质凝灰岩
Table 1  老厂矿区火山岩岩性及旋回划分
地层 标本数 岩(矿)石名称 电阻率ρ/(Ω·m) 极化率η/%
变化范围 几何均值 变化范围 几何均值
C 2 + 3 1 + 2 C 1 8 C 1 7 10 铅锌矿(含黄铁矿) 2~34 5.5 10.25~58.81 24.10
C2+3 3 铁锰矿石(有裂隙含褐铁矿较多) 3~16 7.3 1.27~2.94 11.30
4 锰矿石 480~776 604 8.9~13.2 1.83
P 1 2 5 泥晶灰岩 191~401 248 0.21~0.39 0.26
P 1 1 6 白云质灰岩 1048~4265 1827 0.48~1.52 0.81
C 2 + 3 3 6 珊瑚灰岩 1171~3790 1908 0.43~0.76 0.53
C 2 + 3 1 + 2 9 白云质灰岩 1064~2947 1893 0.19~0.59 0.35
C 1 8 10 沉凝灰岩 119~841 327 0.49~2.94 1.81
C 1 7 2 玄武岩 1492~1985 1765 1.34~6.0 3.10
3 玄武质凝灰岩 392~990 678 0.28~1.46 0.66
5 玄武质凝灰岩(含铅锌矿、黄铁矿) 82~110 95 5.46~10.67 7.63
C 1 5 + 6 13 粗面安山质凝灰岩(富含黄铁矿、黄铜矿) 6~205 65 7.01~38.39 16.10
4 粗面玄武质硅化凝灰岩 796~1675 1083 1.45~2.16 2.14
C 1 4 12 安山质凝灰角砾岩(含黄铁矿) 25~196 56 6.38~23.88 13.10
C 1 3α 4 安山质集块岩、凝灰角砾岩(含黄铁矿) 49~84 70 7.31~18.51 10.65
C 1 2β 15 玄武岩、玄武质熔结角砾岩 281~2911 642 0.4~8.01 2.33
D1 7 石英砂岩 480~2247 944 0.74~2.04 1.22
C 1 2~ C 1 8
(按火山岩
是否含矿
分别统计)
31 含矿火山岩(玄武质凝灰岩、粗面安山
质凝灰岩、安山质凝灰角砾岩)
6~205 63.7 5.46~38.39 13.40
36 火山岩(凝灰岩、玄武岩、
集块岩、熔结角砾岩)
203~2911 647 0.28~8.01 1.82
Table 2  老厂矿区岩(矿)石电性参数统计
Fig.2  研究区大功率激电与AMT测点分布
Fig.3  研究区激电中梯扫面视极化率分布
Fig.4  研究区激电中梯扫面视电阻率分布
Fig.5  研究区激电测深实测数据反演结果
a—CS1实测数据;b—CS2实测数据;c—CS3实测数据;d—CS1反演结果;e—CS2反演结果;f—CS3反演结果
Fig.6  综合地球物理解释
a—AMT二维反演结果;b—解释模型
[1] 王安建, 曹殿华, 管烨, 等. 西南三江成矿带中南段金属矿床成矿规律与若干问题探讨[J]. 地质学报, 2009, 83(10):1365-1375.
[1] Wang A J, Cao D H, Guan Y, et al. Metallogenic belts of south Three Rivers region,southwest China:Distribution,characteristics,and discussion[J]. Acta Geologica Sinica, 2009, 83(10):1365-1375.
[2] 高兰, 肖克炎, 丛源, 等. 西南三江锌铅银铜锑金成矿带成矿特征及资源潜力[J]. 地质学报, 2016, 90(7):1650-1667.
[2] Gao L, Xiao K Y, Cong Y, et al. Metallogenic characteristics and mineral resource potential of the southwestern Shanjiang Zn-Pb-Cu-Ag-Sb-Au metallogenic belt[J]. Acta Geologica Sinica, 2016, 90(7):1650-1667.
[3] 李峰, 鲁文举, 杨映忠, 等. 危机矿山成矿规律与找矿研究:以云南澜沧老厂矿床为例[M]. 昆明: 云南科技出版社, 2010.
[3] Li F, Lu W J, Yang Y Z, et al. Metallogenetic regularities and exploration on crisis mine:As exemplified by the Laochang polymetallic deposit,Yunnan[M]. Kunming: Yunnan Science and Technology Press, 2010.
[4] 叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5):1362-1372.
[4] Ye L, Gao W, Yang Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit,Lancang,Yunnan Province[J]. Acta Petrologica Sinica, 2012, 28(5):1362-1372.
[5] 杨帆. 澜沧老厂多金属矿床叠加成矿系统特征及成矿模式[D]. 昆明: 昆明理工大学, 2014.
[5] Yang F. Characteristics of superimposed metallogenic system and metallogenic model of Laochang polymetallic deposit in Lancang[D]. Kunming: Kunming University of Science and Technology, 2014.
[6] 张云付. 云南澜沧老厂铅锌矿区物化探异常特征及找矿预测[J]. 矿产与地质, 2020, 34(3):510-516.
[6] Zhang Y F. Geophysical and geochemical anomaly characteristics and prospecting prediction in Laochang lead and zinc mining area in Lancang County of Yunnan[J]. Mineral Resources and Geology, 2020, 34(3):510-516.
[7] 李小明, 王党靠, 李得元, 等. 云南澜沧老厂银铅锌铜多金属矿床流体化学特征及找矿方向预测[J]. 云南冶金, 2022, 51(3):12-16,24.
[7] Li X M, Wang D K, Li D Y, et al. Chemical characteristics and prospecting direction prediction of Silver-lead-zinc copper polymetallic deposits’fluid in Laocang of Lancang,Yunnan[J]. Yunnan Metallurgy, 2022, 51(3):12-16,24.
[8] 袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1744-1805.
[8] Yuan G Q, Xiong S Q, Meng Q M, et al. Geophysical exploration technology and application research[J]. Acta Geologica Sinica, 2011, 85(11):1744-1805.
[9] 张光之, 周立国, 王延浩. 综合电法在内蒙古查敖包银铅锌矿区的应用[J]. 地球物理学进展, 2015, 30(2):867-871.
[9] Zhang G Z, Zhou L G, Wang Y H. Application of integrated electrical mathods to silver lead-zinc mine zone of Chaaobao in Inner Mongolia[J]. Progress in Geophysics, 2015, 30(2):867-871.
[10] 毕炳坤, 常云真, 施强, 等. 综合物探在崤山东部浅覆盖区勘查银多金属矿床中的应用[J]. 物探与化探, 2019, 43(5):976-985.
[10] Bi B K, Chang Y Z, Shi Q, et al. The application of geophysical exploration to prospecting for silver-lead-zinc deposits in shallow cover areas of eastern Xiaoshan[J]. Geophysical and Geochemical Exploration, 2019, 43(5):976-985.
[11] 张前进, 杨进. 综合电法在深部隐伏矿体勘查中的应用实例[J]. 物探与化探, 2010, 34(1):40-43.
[11] Zhang Q J, Yang J. The application of integrated electric methods to the exploration of deep concealed ore bodies[J]. Geophysical and Geochemical Exploration, 2010, 34(1):40-43.
[12] 杨宗耀, 唐菊兴, 任东兴, 等. 西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J/OL]. 地球科学:1-30[2023-04-06]. http://kns.cnki.net/kcms/detail/42.1874.P.20220607.0926.006.html.
[12] Yang Z Y, Tang J X, Ren D X, et al. Geochemical and geophysical exploration in Sinongduo Ag polymetallic deposit,Tibet[J/OL]. Earth Science:1-30[2023-04-06]. http://kns.cnki.net/kcms/detail/42.1874.P.20220607.0926.006.html.
[13] Farquharson C G, Craven J A. Three-dimensional inversion of magnetotelluric data for mineral exploration:An example from the McArthur River uranium deposit,Saskatchewan,Canada[J]. Journal of Applied Geophysics, 2009, 68(4):450-458.
doi: 10.1016/j.jappgeo.2008.02.002
[14] Garcia X, Jones A G. Atmospheric sources for audio-magnetotelluric (AMT) sounding[J]. Geophysics, 2002, 67(2):448-458.
doi: 10.1190/1.1468604
[15] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
[15] Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
[16] 何帅, 杨炳南, 阮帅, 等. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3):618-627.
[16] He S, Yang B N, Ruan S, et al. Fine interpretation of the exploration results of diamond-bearing rock masses in maping area,Guizhou using the 3D AMT forward modeling and inversion technologies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):618-627.
[17] 高科宁, 邓居智, 刘文玉, 等. 黑龙江省三合屯金矿床深部电性结构与成矿模式[J]. 吉林大学学报:地球科学版, 2022, 52(3):684-700.
[17] Gao K N, Deng J Z, Liu W Y, et al. Deep electrical structure and metallogenic model in Sanhetun mining area,Heilongjiang Province[J]. Journal of Jilin University:Earch Science Edition, 2022, 52(3):684-700.
[18] 陈仕炎. 澜沧铅矿老厂矿区综合信息成矿预测[D]. 昆明: 昆明理工大学, 2006.
[18] Chen S Y. Comprehensive information metallogenic prediction in Laochang mining area of Lancang lead mine[D]. Kunming: Kunming University of Science and Technology, 2006.
[19] 高建国. 澜沧老厂铅锌多金属矿床综合成矿信息与定位定量预测[D]. 昆明: 昆明理工大学, 2007.
[19] Gao J G. Research on the synthetic metallogenic information and the positioning location and quantitative prediction of resource orientation for Lancang-Laochang lead zinc-polymetallic deposit[D]. Kunming: Kunming University of Science and Technology, 2007.
[20] Egbert G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2):475-496.
doi: 10.1111/gji.1997.130.issue-2
[1] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[2] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[3] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[4] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[5] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[6] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[7] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[8] 程正璞, 郭淑君, 魏强, 周乐, 雷鸣, 李戍. AMT地形影响与带地形反演研究[J]. 物探与化探, 2023, 47(1): 146-155.
[9] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[10] 杨波, 孙栋华. 东天山某环状熔融岩体航空电磁场特征及深部找矿研究[J]. 物探与化探, 2022, 46(4): 816-823.
[11] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[12] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[13] 冯军, 蒋文, 张征. 西北某石英脉型金矿综合物探特征及定量解释实例[J]. 物探与化探, 2022, 46(3): 661-667.
[14] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[15] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com