Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 418-423    DOI: 10.11720/wtyht.2022.1255
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
镍酸钐研究进展及其用于海洋电场传感器的可行性分析
肖月桐1(), 王猛1(), 王兴卓1, 陈凯1, 时宗洋2, 赵一宇2, 付悦思1
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.北京机械设备研究所,北京 100854
Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors
XIAO Yue-Tong1(), WANG Meng1(), WANG Xing-Zhuo1, CHEN Kai1, SHI Zong-Yang2, ZHAO Yi-Yu2, FU Yue-Si1
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083,China
2. Beijing Institute of Mechanical Equipment, Beijing 100854,China
全文: PDF(1135 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

海洋电场信号被广泛用于海底以下地质构造、水体目标探测、物理海洋和海洋物理特性分析等研究领域,收集海洋电场信号有重要的科学价值,其中海洋电场传感器是其测量媒介。近年来,钙钛矿型复合氧化物作为新型材料成为研究热点,镍酸钐是钙钛矿复合氧化物中性能比较特殊的一个,具有金属—绝缘体相变特性,在海水中稳定性强,对低频电场信号敏感度高,有望成为新型海洋电场传感器的电极材料。国内外学者对镍酸钐进行了一些研究,主要集中于镍酸钐的电学特性尤其是金属—绝缘体相变特性、光学特性及其制备流程。本文对上述研究内容进行了系统综述,并对镍酸钐用于海洋电场传感器的可行性进行了初步探讨。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖月桐
王猛
王兴卓
陈凯
时宗洋
赵一宇
付悦思
关键词 镍酸钐海洋电场传感器镍酸钐海洋电场电极传感器金属—绝缘体相变    
Abstract

Ocean electric field signals are widely used in the fields of geological tectonics, water target detection, physical ocean, and the analysis of ocean physical characteristics. It is of great scientific value to collect the ocean electric field signals, while the ocean electric field is measured using ocean electric field sensors. In recent years, perovskite-type composite oxides have become a research hot spot as new materials. Among these composite oxides, SmNiO3 is the one that possesses some unique properties including metal-insulator phase transition, strong stability in seawater, and high sensitivity to low-frequency electric field signals. Therefore, it is expected to become a new type of electrode materials in ocean electric field sensors. Domestic and foreign researchers have carried out some studies on SmNiO3, which mainly focus on the electrical properties (especially the metal-insulator phase transition and optical properties) and preparation process of SmNiO3. This paper systematically reviews the above research contents and preliminarily explores the feasibility of applying SmNiO3 in marine electric field sensors.

Key wordsSmNiO3 ocean electric field sensor    SmNiO3    ocean electric field    electrode    sensor    metal insulator phase transition
收稿日期: 2021-05-07      修回日期: 2021-06-18      出版日期: 2022-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(41874142);国家自然科学基金项目(41504138);中国地质大学(北京)“大学生创新创业训练计划”项目
通讯作者: 王猛
作者简介: 肖月桐(2001-),女,从事测控技术与仪器的相关学习与科研工作。Email: 2477418907@qq.com
引用本文:   
肖月桐, 王猛, 王兴卓, 陈凯, 时宗洋, 赵一宇, 付悦思. 镍酸钐研究进展及其用于海洋电场传感器的可行性分析[J]. 物探与化探, 2022, 46(2): 418-423.
XIAO Yue-Tong, WANG Meng, WANG Xing-Zhuo, CHEN Kai, SHI Zong-Yang, ZHAO Yi-Yu, FU Yue-Si. Research progress of SmNiO3 and feasibility analysis of applying SmNiO3 in ocean electric field sensors. Geophysical and Geochemical Exploration, 2022, 46(2): 418-423.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1255      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/418
Fig.1  海洋电极连接系统示意[2]
Fig.2  鲨鱼的洛伦兹壶腹
Fig.3  氢离子进入镍酸钐与之相互作用过程示意[9]
Fig.4  镍酸钐中掺杂锂的示意
Fig.5  0.6 mol/L NaCl溶液中镍酸钐在电场作用下电导率(a)及光学性质(b)的变化[9]
[1] 陈闻博, 宋玉苏, 王烨煊. 海洋电场传感器研究概况[J]. 传感器与微系统, 2019, 38(12):1-4.
[1] Chen W B, Song Y S, Wang Y X. Research situation of marine electric field sensors[J]. Transducer and Microsystem Technologies, 2019, 38(12): 1-4.
[2] 申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2):211-217.
[2] Shen Z, Song Y S, Wang Y X, et al. Study on the detection characteristics of Ag /AgCl and carbon fiber marine electric field electrodes[J]. Chinese Journal of scientific instruments, 2018, 39(2): 211-217.
[3] 王杰红. 超低噪声海洋电场传感器的研究[D]. 西安: 西安电子科技大学, 2014.
[3] Wang J H. Research on low noise marine electric field sensor[D]. Xi'an: Xidian University, 2014.
[4] 王泽臣. 海洋电场探测电极研究[D]. 杭州: 杭州电子科技大学, 2020.
[4] Wang Z C. Research on marine electric field detection electrode[D]. Hangzhou: Hangzhou Dianzi University, 2020.
[5] 张翼. 全固态海洋传感器稳定性研究[D]. 西安: 西安电子科技大学, 2009.
[5] Zhang Y. Research on the stability of all solid-state marine sensor[D]. Xi'an: Xidian University, 2009.
[6] 张坤, 宋玉苏, 李瑜. 海洋电场探测电极的研究概况[J]. 材料导报, 2014, 28(21):20-23.
[6] Zhang K, Song Y S, Li Yu. Research status of underwater electric field sensing electrode[J]. Materials Reports, 2014, 28(21): 20-23.
[7] Petiau G, Dupis A. Noise,temperature coefficient, and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 2010, 28(5): 792-804.
doi: 10.1111/j.1365-2478.1980.tb01261.x
[8] Yoo P, Liao P. Metal-to-insulator transition in SmNiO3 induced by chemical doping: A first principles study[J]. Molecular Systems Design & Engineering, 2018, 3(1): 264-274.
[9] Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553: 68-72.
doi: 10.1038/nature25008
[10] 贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4):151-160,187.
[10] Jia L N, Fu Y B, Zhao Z, et al. Research on progress in perovskite Nickelate SmNiO3 Film[J]. Surface Technology, 2020, 49(4): 151-160, 187.
[11] 孙岩. 钙钛矿SmNiO3外延薄膜的制备及其金属—绝缘体相变的电场调控研究[D]. 上海: 华东师范大学, 2017.
[11] Sun Y. Study on preparation of perovskite SmNiO3 epitaxial thin films and tuning of the metal-insulator transition by electric field[D]. Shanghai: East China Normal University, 2017.
[12] 黄浩亮, 罗震林, 杨远俊. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// 中国材料研究学会, 2011.
[12] Huang H L, Luo Z L, Yang Y J. Effect of compressive strain on MI transition in SmNiO3 epitaxial thin films grown on LSAO substrate[C]// Chinese Society for Materials Research, 2011.
[13] Torriss B, J Margot, M Chaker. Metal-insulator transition of strained SmNiO3 Thin films: Structural, electrical and infrared optical properties[J]. Scientific Reports, 2017, 7(40915): 1-9.
doi: 10.1038/s41598-016-0028-x
[14] Iqbal A, Khan S A, Rahman N U, et al. Epitaxial growth controlled tailoring of Metal-Insulator (MI) Transition properties of rare earth correlated oxides[C]// The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Waikiki Beach, HI, USA, 2014.
[15] Chen J K, A Bird, Yan F B, et al. Mechanical and correlated electronic transport properties of preferentially orientated SmNiO3 films[J]. Ceramics International, 2020, 46(5):6693-6697.
doi: 10.1016/j.ceramint.2019.11.157
[16] 白玉杭. 钙钛矿镍酸盐异质结构的制备与性能研究[D]. 南京: 南京大学, 2017.
[16] Bai Y H. Preparation and characterization of perovskite nickelate heterostructures[D]. Nanjing: Nanjing University, 2017.
[17] 胡昌. 钙钛矿型稀土镍酸盐RNiO3薄膜光电性质的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[17] Hu C. Study on Photoelectric properties of perovskite-type rare earth nickel RNiO3 films[D]. Harbin: Harbin Institute of Technology, 2020.
[18] 贾梅秀. 钛酸钡/镍酸钐异质结的阻变机理研究[D]. 上海:华东师范大学, 2019.
[18] Jia M X. Study on the resistive switching mechanism of BaTiO3/SmNiO3 heterojunction[D]. Shanghai:East China Normal University, 2019.
[19] 胡海洋, 陈吉堃, 邵飞, 等. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导[J]. 物理学报, 2019, 68(2):198-207.
[19] Hu H Y, Chen J K, Shao F, et al. Conductivity and infrared photoconductivity of SmNiO3 perovskite oxide thin films under stress[J]. Acta physica Sinica, 2019, 68(2): 198-207.
[20] Chen B J, Sun Y, Yang N. Electronic phase diagram of oxygen-deficient SmNiO3-δ epitaxial thin films[J]. Journal of Physics D: Applied Physics, 2017, 50(23):1.
[21] Lan C, Li H, Zhao S. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3[J]. Journal of Computational Electronics, 2020, 19(3): 905-909.
doi: 10.1007/s10825-020-01501-w
[22] Conchon F, Boulle A, Girardot C, et al. Influence of strain relaxation on the structural stabilization of SmNiO3 films epitaxially grown on (001) SrTiO3 substrates[J]. Materials Science and Engineering. B:Solid State Materials for Advanced Technology, 2007, 144(1-3): 32-37.
doi: 10.1016/j.mseb.2007.07.096
[23] Li Z Y, Zhou Y, Qi H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125.
doi: 10.1002/adma.201601204
[24] Cui Y Y, Ren J S, Yang G, et al. First-principles study of intrinsic point defects and optical properties of SmNiO3[J]. The Journal of Physical Chemistry A, 2021, 125(1): 356-365.
doi: 10.1021/acs.jpca.0c10480
[1] 刘彬, 徐进力, 杜雪苗, 唐瑞玲, 张鹏鹏, 白金峰, 于林松, 万方. 超声提取—离子选择电极法测定化肥样品中的氟[J]. 物探与化探, 2023, 47(3): 775-781.
[2] 王辉, 付书计, 葛帅寅, 马方圆, 宋宝家, 罗景程. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3): 714-721.
[3] 刘长胜, 马金发, 朱文杰, 周海根. 深井电场测量不极化电极特性研究[J]. 物探与化探, 2020, 44(4): 816-819.
[4] 李忠平, 王晓华. 基于二维电测深数据作三维反演的基岩探测[J]. 物探与化探, 2020, 44(3): 643-648.
[5] 张来福, 李士强, 刘国强, 杨虹, 田赟, 李国栋. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1): 220-225.
[6] 赵毅, 陈晓东, 黄跃, 王刚, 李永博, 赵富刚, 王书民. 适用于浅水区工作的三分量感应式磁场传感器研制[J]. 物探与化探, 2019, 43(6): 1326-1332.
[7] 杜鹏, 刘晓玲, 徐新战, 常镪, 付连红. 利用温度检测钻孔灌注桩混凝土拌合物面的研究[J]. 物探与化探, 2019, 43(3): 667-671.
[8] 刘成功, 金胜, 魏文博, 景建恩, 叶高峰, 尹曜田. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2): 351-358.
[9] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[10] 冉军林, 刘俊岩. 组合激电测深装置的应用与研究[J]. 物探与化探, 2018, 42(6): 1259-1263.
[11] 高昕星, 赵斌, 路丽勇, 喻杰, 徐娅. 基于光纤电流传感的BEAM隧道超前地质预报方法[J]. 物探与化探, 2018, 42(2): 412-421.
[12] 晏月平, 徐军伟, 黄朝宇. 等深模式电极序列法电测深研究[J]. 物探与化探, 2016, 40(6): 1173-1177.
[13] 赵育刚, 薛国强, 黄申硕, 陆占国, 崔江伟, 侯东洋. 瞬变电磁B场参数测试效果[J]. 物探与化探, 2016, 40(1): 174-178.
[14] 杨兴沐, 黄卓雄, 葛为中, 梁炳和, 高建东. 遥控电极阵列拓展高密度电阻率法勘探深度研究[J]. 物探与化探, 2016, 40(1): 73-77.
[15] 叶俊麟, 罗有春. 新疆戈壁地区大功率激电勘探接地电阻改善方法[J]. 物探与化探, 2015, 39(6): 1156-1159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com